ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidences for the random singlet phase in a new honeycomb iridate SrIr$_2$O$_{6-delta}$

137   0   0.0 ( 0 )
 نشر من قبل Shiliang Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strong spin-orbital-coupling magnetic systems with the honeycomb structure can provide bond-directional interactions which may result in Kitaev quantum spin liquids and exotic anyonic excitations. However, one of the key ingredients in real materials$-$disorders$-$has been much less studied in Kitaev systems. Here we synthesized a trigonal SrIr$_2$O$_{6-delta}$ with $delta approx 0.25$, which consists of two-dimensional honeycomb Ir planes with edge-sharing IrO$_6$ octahedra. First-principles computation and experimental measurements suggest that the electronic system is gapped, and there should be no magnetic moment as the Ir$^{5+}$ ion has no unpaired electrons. However, significant magnetism has been observed in the material, and it can be attributed to disorders that are most likely from oxygen vacancies. No magnetic order is found down to 0.05 K, and the low-temperature magnetic properties exhibit power-law behaviors in magnetic susceptibility and zero-field specific heat, and a single-parameter scaling of the specific heat under magnetic fields. These results provide strong evidence for the existence of the random singlet phase in SrIr$_2$O$_{6-delta}$, which offers a different member to the family of spin-orbital entangled iridates and Kitaev materials.



قيم البحث

اقرأ أيضاً

We investigate the structural and magnetic properties of a Kitaev spin liquid candidate material Ag$_3$LiIr$_2$O$_6$ based on $^7$Li nuclear magnetic resonance line shape, Knight shift and spin-lattice relaxation rate $1/T_1$. The first sample A show s signatures of magnetically ordered spins, and exhibits one sharp $^7$Li peak with FWHM increasing significantly below 14~K. $1/T_1^{stretch}$ of this sample displays a broad local maximum at 40~K, followed by a very sharp peak at $T_N = 9pm1$~K due to critical slowing down of Ir spin fluctuations, a typical signature of magnetic long range order. In order to shed light on the position-by-position variation of $1/T_1$ throughout the sample, we use Inverse Laplace Transform $T_1$ analysis based on Tikhonov regularization to deduce the density distribution function $P(1/T_1)$. We demonstrate that $sim 60%$ of Ir spins are statically ordered at the NMR measurement timescale but the rest of the sample volume remains paramagnetic even at 4.2~K, presumably because of structural disorder induced primarily by stacking faults. In order to further investigate the influence of structural disorder, we compare these NMR results with those of a second sample B, which has been shown by transmission electron microscope to have domains with unwanted Ag inclusion at Li and Ir sites within the Ir honeycomb planes. The sample B displays an additional NMR peak with relative intensity of $sim 17%$. The small Knight shift and $1/T_1$ of these defect-induced $^7$Li sites and the enhancement of bulk susceptibility at low temperatures suggest that these defects generate domains of only weakly magnetic Ir spins accompanied by free spins, leading to a lack of clear signatures of long-range order. The apparent lack of long-range order could be easily misinterpreted as evidence for the realization of a spin liquid ground state in highly disordered Kitaev lattice.
We use x-ray spectroscopy at Ir L$_3$/L$_2$ absorption edge to study powder samples of the intercalated honeycomb magnet Ag$_3$LiIr$_2$O$_6$. Based on x-ray absorption and resonant inelastic x-ray scattering measurements, and exact diagonalization ca lculations including next-neighbour Ir-Ir electron hoping integrals, we argue that the intercalation of Ag atoms results in a nearly itinerant electronic structure with enhanced Ir-O hybridization. As a result of the departure from the local relativistic $j_{rm eff}! = !1/2$ state, we find that the relative orbital contribution to the magnetic moment is increased, and the magnetization density is spatially extended and asymmetric. Our results confirm the importance of metal - ligand hybridazation in the magnetism of transition metal oxides and provide empirical guidance for understanding the collective magnetism in intercalated honeycomb iridates.
We report a $^{35}$Cl nuclear magnetic resonance (NMR) study of the diluted Kitaev material $alpha$-Ru$_{1-x}$Ir$_x$Cl$_3$ ($x=0.1$ and $0.2$) where non-magnetic Ir$^{3+}$ dopants substitute Ru$^{3+}$ ions. Upon dilution, the $^{35}$Cl spectra exhibi t unusual large magnetic inhomogeneity, which sets in at temperatures below the Kitaev exchange energy scale. At the same time, the $^{35}$Cl spin-lattice relaxation rate $T_1^{-1}$ as a function of dilution and magnetic field unravels a critical doping of $x_capprox 0.22$, towards which both the field-induced spin gap and the zero-field magnetic ordering are simultaneously suppressed, while novel gapless low-energy spin excitations dominate the relaxation process. These NMR findings point to the stabilization of a random singlet phase in $alpha$-Ru$_{1-x}$Ir$_x$Cl$_3$, arising from the interplay of dilution and exchange frustration in the quantum limit.
We report equilibrium and nonequilibrium optical measurements on the recently synthesized harmonic honeycomb iridate gamma-Li$_2$IrO$_3$ (LIO), as well as the layered honeycomb iridate Na$_2$IrO$_3$ (NIO). Using Fourier transform infrared microscopy we performed reflectance measurements on LIO, from which we obtained the optical conductivity below 2 eV. In addition we measured the photoinduced changed in reflectance, Delta R, as a function of time, t, temperature, T, and probe field polarization in both LIO and NIO. In LIO, Delta R(t,T) is anisotropic and comprised of three T dependent components. Two of these components are related to the onset of magnetic order and the third is related to a photoinduced population of metastable electronic excited states. In NIO, Delta R(t,T) has a single T dependent component that is strikingly similar to the electronic excitation component of Delta R in LIO. Through analysis and comparison of Delta R(t,T) for two compounds, we extract information on the onset of magnetic correlations at and above the transition temperature in LIO, the bare spin-flip scattering rate in equilibrium, the lifetime of low-lying quasiparticle excitations, and the polarization dependence of optical transitions that are sensitive to magnetic order.
Using an exact numerical solution and semiclassical analysis, we investigate quantum oscillations (QOs) in a model of a bilayer system with an anisotropic (elliptical) electron pocket in each plane. Key features of QO experiments in the high temperat ure superconducting cuprate YBCO can be reproduced by such a model, in particular the pattern of oscillation frequencies (which reflect magnetic breakdown between the two pockets) and the polar and azimuthal angular dependence of the oscillation amplitudes. However, the requisite magnetic breakdown is possible only under the assumption that the horizontal mirror plane symmetry is spontaneously broken and that the bilayer tunneling, $t_perp$, is substantially renormalized from its `bare value. Under the assumption that $t_perp= tilde{Z}t_perp^{(0)}$, where $tilde{Z}$ is a measure of the quasiparticle weight, this suggests that $tilde{Z} lesssim 1/20$. Detailed comparisons with new YBa$_2$Cu$_3$O$_{6.58}$ QO data, taken over a very broad range of magnetic field, confirm specific predictions made by the breakdown scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا