ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Electron Acceleration by Temperature Anisotropy Instabilities Under Solar Flare Plasma Conditions

73   0   0.0 ( 0 )
 نشر من قبل Mario Riquelme
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use 2D particle-in-cell (PIC) plasma simulations to study electron acceleration by electron temperature anisotropy instabilities, assuming magnetic fields ($B$), electron densities ($n_e$) and temperatures ($T_e$) typical of the top of contracting magnetic loops in solar flares. We focus on the long-term effect of $T_{e,perp} > T_{e,parallel}$ instabilities by driving the anisotropy growth during the whole simulation time ($T_{e,perp}$ and $T_{e,parallel}$ are the temperatures perpendicular and parallel to the field). This is achieved by imposing a shear velocity, which amplifies the field due to magnetic flux freezing, making $T_{e,perp} > T_{e,parallel}$ due to electron magnetic moment conservation. We use the initial conditions: $T_e sim 52$ MK, and $B$ and $n_e$ such that the ratio between the electron cyclotron and plasma frequencies $omega_{ce}/omega_{pe}=0.53$. When the anisotropy becomes large enough, oblique, quasi-electrostatic (OQES) modes grow, efficiently scattering the electrons and limiting their anisotropy. After that, when $B$ has grown by a factor $sim 2-3$ (corresponding to $omega_{ce}/omega_{pe}sim 1.2-1.5$), the unstable modes become dominated by parallel, electromagnetic z (PEMZ) modes. In contrast to the OQES dominated regime, the scattering by PEMZ modes is highly inelastic, producing significant electron acceleration. When the field has grown by a final factor $sim 4$, the electron energy spectrum shows a nonthermal tail that resembles a power-law of index $sim$ 2.9, plus a high-energy bump reaching $sim 300$ keV. Our results suggest a critical role played by $omega_{ce}/omega_{pe}$ and $T_e$ in determining the efficiency of electron acceleration by temperature anisotropy instabilities in solar flares.

قيم البحث

اقرأ أيضاً

66 - Bin Chen 2015
Solar flares - the most powerful explosions in the solar system - are also efficient particle accelerators, capable of energizing a large number of charged particles to relativistic speeds. A termination shock is often invoked in the standard model o f solar flares as a possible driver for particle acceleration, yet its existence and role have remained controversial. We present observations of a solar flare termination shock and trace its morphology and dynamics using high-cadence radio imaging spectroscopy. We show that a disruption of the shock coincides with an abrupt reduction of the energetic electron population. The observed properties of the shock are well-reproduced by simulations. These results strongly suggest that a termination shock is responsible, at least in part, for accelerating energetic electrons in solar flares.
Non-potential magnetic energy promptly released in solar flares is converted to other forms of energy. This may include nonthermal energy of flare-accelerated particles, thermal energy of heated flaring plasma, and kinetic energy of eruptions, jets, up/down flows, and stochastic (turbulent) plasma motions. The processes or parameters governing partitioning of the released energy between these components is an open question. How these components are distributed between distinct flaring loops and what controls these spatial distributions is also unclear. Here, based on multi-wavelength data and 3D modeling, we quantify the energy partitioning and spatial distribution in the well observed SOL2014-02-16T064620 solar flare of class C1.5. Nonthermal emissions of this flare displayed a simple impulsive single-spike light curves lasting about 20,s. In contrast, the thermal emission demonstrated at least three distinct heating episodes, only one of which was associated with the nonthermal component. The flare was accompanied by up and down flows and substantial turbulent velocities. The results of our analysis suggest that (i) the flare occurs in a multi-loop system that included at least three distinct flux tubes; (ii) the released magnetic energy is divided unevenly between the thermal and nonthermal components in these loops; (iii) only one of these three flaring loops contains an energetically important amount of nonthermal electrons, while two other loops remain thermal; (iv) the amounts of direct plasma heating and that due to nonthermal electron loss are comparable; (v) the kinetic energy in the flare footpoints constitute only a minor fraction compared with the thermal and nonthermal energies.
128 - Eduard P. Kontar 2019
Dynamics of an spatially limited electron beam in the inhomogeneous solar corona plasma is considered in the framework of weak turbulence theory when the temperature of the beam significantly exceeds that of surrounding plasma. The numerical solution of kinetic equations manifests that generally the beam accompanied by Langmuir waves propagates as a beam-plasma structure with a decreasing velocity. Unlike the uniform plasma case the structure propagates with the energy losses in the form of Langmuir waves. The results obtained are compared with the results of observations of type III bursts. It is shown that the deceleration of type III sources can be explained by the corona inhomogeneity. The frequency drift rates of the type III sources are found in a good agreement with the numerical results of beam dynamics.
Plasma turbulence is thought to be associated with various physical processes involved in solar flares, including magnetic reconnection, particle acceleration and transport. Using Ramaty High Energy Solar Spectroscopic Imager ({it RHESSI}) observatio ns and the X-ray visibility analysis, we determine the spatial and spectral distributions of energetic electrons for a flare (GOES M3.7 class, April 14, 2002 23$:$55 UT), which was previously found to be consistent with a reconnection scenario. It is demonstrated that because of the high density plasma in the loop, electrons have to be continuously accelerated about the loop apex of length $sim 2times 10^9$cm and width $sim 7times 10^8$cm. Energy dependent transport of tens of keV electrons is observed to occur both along and across the guiding magnetic field of the loop. We show that the cross-field transport is consistent with the presence of magnetic turbulence in the loop, where electrons are accelerated, and estimate the magnitude of the field line diffusion coefficient for different phases of the flare. The energy density of magnetic fluctuations is calculated for given magnetic field correlation lengths and is larger than the energy density of the non-thermal electrons. The level of magnetic fluctuations peaks when the largest number of electrons is accelerated and is below detectability or absent at the decay phase. These hard X-ray observations provide the first observational evidence that magnetic turbulence governs the evolution of energetic electrons in a dense flaring loop and is suggestive of their turbulent acceleration.
Particle acceleration is one of the most significant features that are ubiquitous among space and cosmic plasmas. It is most prominent during flares in the case of the Sun, with which huge amount of electromagnetic radiation and high-energy particles are expelled into the interplanetary space through acceleration of plasma particles in the corona. Though it has been well understood that energies of flares are supplied by the mechanism called magnetic reconnection based on the observations in X-rays and EUV with space telescopes, where and how in the flaring magnetic field plasmas are accelerated has remained unknown due to the low plasma density in the flaring corona. We here report the first observational identification of the energetic non-thermal electrons around the point of the ongoing magnetic reconnection (X-point); with the location of the X-point identified by soft X-ray imagery and the localized presence of non-thermal electrons identified from imaging-spectroscopic data at two microwave frequencies. Considering the existence of the reconnection outflows that carries both plasma particles and magnetic fields out from the X-point, our identified non-thermal microwave emissions around the X-point indicate that the electrons are accelerated around the reconnection X-point. Additionally, the plasma around the X-point was also thermally heated up to 10 MK. The estimated reconnection rate of this event is ~0.017.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا