ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-asymptotic Confidence Intervals of Off-policy Evaluation: Primal and Dual Bounds

77   0   0.0 ( 0 )
 نشر من قبل Yihao Feng
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Off-policy evaluation (OPE) is the task of estimating the expected reward of a given policy based on offline data previously collected under different policies. Therefore, OPE is a key step in applying reinforcement learning to real-world domains such as medical treatment, where interactive data collection is expensive or even unsafe. As the observed data tends to be noisy and limited, it is essential to provide rigorous uncertainty quantification, not just a point estimation, when applying OPE to make high stakes decisions. This work considers the problem of constructing non-asymptotic confidence intervals in infinite-horizon off-policy evaluation, which remains a challenging open question. We develop a practical algorithm through a primal-dual optimization-based approach, which leverages the kernel Bellman loss (KBL) of Feng et al.(2019) and a new martingale concentration inequality of KBL applicable to time-dependent data with unknown mixing conditions. Our algorithm makes minimum assumptions on the data and the function class of the Q-function, and works for the behavior-agnostic settings where the data is collected under a mix of arbitrary unknown behavior policies. We present empirical results that clearly demonstrate the advantages of our approach over existing methods.

قيم البحث

اقرأ أيضاً

108 - Bo Dai , Ofir Nachum , Yinlam Chow 2020
We study high-confidence behavior-agnostic off-policy evaluation in reinforcement learning, where the goal is to estimate a confidence interval on a target policys value, given only access to a static experience dataset collected by unknown behavior policies. Starting from a function space embedding of the linear program formulation of the $Q$-function, we obtain an optimization problem with generalized estimating equation constraints. By applying the generalized empirical likelihood method to the resulting Lagrangian, we propose CoinDICE, a novel and efficient algorithm for computing confidence intervals. Theoretically, we prove the obtained confidence intervals are valid, in both asymptotic and finite-sample regimes. Empirically, we show in a variety of benchmarks that the confidence interval estimates are tighter and more accurate than existing methods.
Many reinforcement learning applications involve the use of data that is sensitive, such as medical records of patients or financial information. However, most current reinforcement learning methods can leak information contained within the (possibly sensitive) data on which they are trained. To address this problem, we present the first differentially private approach for off-policy evaluation. We provide a theoretical analysis of the privacy-preserving properties of our algorithm and analyze its utility (speed of convergence). After describing some results of this theoretical analysis, we show empirically that our method outperforms previous methods (which are restricted to the on-policy setting).
In this work, we consider the problem of estimating a behaviour policy for use in Off-Policy Policy Evaluation (OPE) when the true behaviour policy is unknown. Via a series of empirical studies, we demonstrate how accurate OPE is strongly dependent o n the calibration of estimated behaviour policy models: how precisely the behaviour policy is estimated from data. We show how powerful parametric models such as neural networks can result in highly uncalibrated behaviour policy models on a real-world medical dataset, and illustrate how a simple, non-parametric, k-nearest neighbours model produces better calibrated behaviour policy estimates and can be used to obtain superior importance sampling-based OPE estimates.
Off-policy evaluation (OPE) holds the promise of being able to leverage large, offline datasets for both evaluating and selecting complex policies for decision making. The ability to learn offline is particularly important in many real-world domains, such as in healthcare, recommender systems, or robotics, where online data collection is an expensive and potentially dangerous process. Being able to accurately evaluate and select high-performing policies without requiring online interaction could yield significant benefits in safety, time, and cost for these applications. While many OPE methods have been proposed in recent years, comparing results between papers is difficult because currently there is a lack of a comprehensive and unified benchmark, and measuring algorithmic progress has been challenging due to the lack of difficult evaluation tasks. In order to address this gap, we present a collection of policies that in conjunction with existing offline datasets can be used for benchmarking off-policy evaluation. Our tasks include a range of challenging high-dimensional continuous control problems, with wide selections of datasets and policies for performing policy selection. The goal of our benchmark is to provide a standardized measure of progress that is motivated from a set of principles designed to challenge and test the limits of existing OPE methods. We perform an evaluation of state-of-the-art algorithms and provide open-source access to our data and code to foster future research in this area.
Importance sampling-based estimators for off-policy evaluation (OPE) are valued for their simplicity, unbiasedness, and reliance on relatively few assumptions. However, the variance of these estimators is often high, especially when trajectories are of different lengths. In this work, we introduce Omitting-States-Irrelevant-to-Return Importance Sampling (OSIRIS), an estimator which reduces variance by strategically omitting likelihood ratios associated with certain states. We formalize the conditions under which OSIRIS is unbiased and has lower variance than ordinary importance sampling, and we demonstrate these properties empirically.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا