ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity, nematicity, and charge density wave in high-Tc cuprates: A common thread

173   0   0.0 ( 0 )
 نشر من قبل Zhongbing Huang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To address the issues of superconducting and charge properties in high-T$_c$ cuprates, we perform a quantum Monte Carlo study of an extended three-band Emery model, which explicitly includes attractive interaction $V_{OO}$ between oxygen orbitals. In the physically relevant parameter range, we find that $V_{OO}$ acts to strongly enhance the long-range part of d-wave pairing correlation, with a clear tendency to form long-range superconducting order in the thermodynamic limit. Simultaneously, increasing $|V_{OO}|$ renders a rapid increase of the nematic charge structure factor at most of wavevectors, especially near $textbf{q}=(0,0)$, indicating a dramatic enhancement of nematicity and charge density waves. Our findings suggest that the attraction between oxygen orbitals in high-T$_c$ cuprates is a common thread linking their superconducting and charge properties.



قيم البحث

اقرأ أيضاً

111 - Li-Han Chen , Da Wang , Yi Zhou 2019
We investigate in underdoped cuprates possible coexistence of the superconducting (SC) order at zero momentum and pair density wave (PDW) at momentum ${bf Q}=(pi, pi)$ in the presence of a Neel order. By symmetry, the $d$-wave uniform singlet pairing $dS_0$ can coexist with the $d$-wave triplet PDW $dT_{bf Q}$, and the $p$-wave singlet PDW $pS_{bf Q}$ can coexist with the $p$-wave uniform triplet $pT_0$. At half filling, we find the novel $pS_{bf Q}+pT_0$ state is energetically more favorable than the $dS_0+dT_{bf Q}$ state. At finite doping, however, the $dS_0+dT_{bf Q}$ state is more favorable. In both types of states, the variational triplet parameters, $dT_{bf Q}$ and $pT_0$, are of secondary significance. Our results point to a fully symmetric $mathrm{Z_2}$ quantum spin liquid with spinon Fermi surface in proximity to the Neel order at zero doping, and to intertwined $d$-wave triplet PDW fluctuations and spin moment fluctuations along with the dominant $d$-wave singlet SC at finite doping. The results are obtained by variational quantum Monte Carlo simulations.
126 - Z. Tesanovic 2004
The modulated density of states observed in recent STM experiments in underdoped cuprates is argued to be a manifestation of the charge density wave of Cooper pairs (CPCDW). CPCDW formation is due to superconducting phase fluctuations enhanced by Mot t-Hubbard correlations near half-filling. The physics behind the CPCDW is related to a Hofstadter problem in a dual superconductor. It is shown that CPCDW does not impact nodal fermions at the leading order. An experiment is proposed to probe coupling of the CPCDW to the spin carried by nodal quasiparticles.
The discovery of charge-density wave (CDW)-related effects in the resonant inelastic x-ray scattering (RIXS) spectra of cuprates holds the tantalizing promise of clarifying the interactions that stabilize the electronic order. Here, we report a compr ehensive RIXS study of La2-xSrxCuO4 (LSCO) finding that CDW effects persist up to a remarkably high doping level of x = 0.21 before disappearing at x = 0.25. The inelastic excitation spectra remain essentially unchanged with doping despite crossing a topological transition in the Fermi surface. This indicates that the spectra contain little or no direct coupling to electronic excitations near the Fermi surface, rather they are dominated by the resonant cross-section for phonons and CDW-induced phonon-softening. We interpret our results in terms of a CDW that is generated by strong correlations and a phonon response that is driven by the CDW-induced modification of the lattice.
In underdoped cuprates, the interplay of the pseudogap, superconductivity, and charge and spin ordering can give rise to exotic quantum states, including the pair density wave (PDW), in which the superconducting (SC) order parameter is oscillatory in space. However, the evidence for a PDW state remains inconclusive and its broader relevance to cuprate physics is an open question. To test the interlayer frustration, the crucial component of the PDW picture, we performed transport measurements on La$_{1.7}$Eu$_{0.2}$Sr$_{0.1}$CuO$_{4}$ and La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_{4}$, cuprates with striped spin and charge orders, in perpendicular magnetic fields ($H_perp$), and also with an additional field applied parallel to CuO$_2$ layers ($H_parallel$). We detected several phenomena predicted to arise from the existence of a PDW, including an enhancement of interlayer SC phase coherence with increasing $H_parallel$. Our findings are consistent with the presence of local, PDW pairing correlations that compete with the uniform SC order at $T_{c}^{0}< T<(2-6) T_{c}^{0}$, where $T_{c}^{0}$ is the $H=0$ SC transition temperature, and become dominant at intermediate $H_perp$ as $Trightarrow 0$. These data also provide much-needed transport signatures of the PDW in the regime where superconductivity is destroyed by quantum phase fluctuations.
Besides superconductivity, copper-oxide high temperature superconductors are susceptible to other types of ordering. We use scanning tunneling microscopy and resonant elastic x-ray scattering measurements to establish the formation of charge ordering in the high-temperature superconductor Bi2Sr2CaCu2O8+x. Depending on the hole concentration, the charge ordering in this system occurs with the same period as those found in Y-based or La-based cuprates, and displays the analogous competition with superconductivity. These results indicate the similarity of charge organization competing with superconductivity across different families of cuprates. We observe this charge ordering to leave a distinct electron-hole asymmetric signature (and a broad resonance centered at +20 meV) in spectroscopic measurements, thereby indicating that it is likely related to the organization of holes in a doped Mott insulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا