ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast dissipation of Colliding Alfven Waves in a Magnetically Dominated Plasma

328   0   0.0 ( 0 )
 نشر من قبل Xinyu Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic energy around compact objects often dominates over plasma rest mass, and its dissipation can power the object luminosity. We describe a dissipation mechanism which works faster than magnetic reconnection. The mechanism involves two strong Alfven waves with anti-aligned magnetic fields $boldsymbol{B}_1$ and $boldsymbol{B}_2$ that propagate in opposite directions along background magnetic field $boldsymbol{B}_0$ and collide. The collision forms a thin current sheet perpendicular to $boldsymbol{B}_0$, which absorbs the incoming waves. The current sheet is sustained by electric field $boldsymbol{E}$ breaking the magnetohydrodynamic condition $E<B$ and accelerating particles to high energies. We demonstrate this mechanism with kinetic plasma simulations using a simple setup of two symmetric plane waves with amplitude $A=B_1/B_0=B_2/B_0$ propagating in a uniform $boldsymbol{B}_0$. The mechanism is activated when $A>1/2$. It dissipates a large fraction of the wave energy, $f=(2A-1)/A^2$, reaching $100%$ when $A=1$. The plane geometry allows one to see the dissipation process in a one-dimensional simulation. We also perform two-dimensional simulations, enabling spontaneous breaking of the plane symmetry by the tearing instability of the current sheet. At moderate $A$ of main interest the tearing instability is suppressed. Dissipation transitions to normal, slower, magnetic reconnection at $Agg 1$. The fast dissipation described in this paper may occur in various objects with perturbed magnetic fields, including magnetars, jets from accreting black holes, and pulsar wind nebulae.



قيم البحث

اقرأ أيضاً

129 - Seiji Zenitani 2017
Basic properties of relativistic magnetic reconnection in electron-positron pair plasmas are investigated by using a particle-in-cell (PIC) simulation. We first revisit a problem by Hesse & Zenitani (2007), who examined the kinetic Ohms law across th e X line. We formulate a relativistic Ohms law by decomposing the stress-energy tensor. Then, the role of the new term, called the heat-flow inertial term, is examined in the PIC simulation data. We further evaluate the energy balance in the reconnection system. These analyses demonstrate physically transparent ways to diagnose relativistic kinetic data.
68 - Maxim Lyutikov 2018
The extreme properties of the gamma ray flares in the Crab Nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly-magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatskys classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization $sigma$. For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum, that dominates the number census; and a high-energy population with hard spectrum, that possesses all the properties needed to explain the Crab flares.
We perform two-dimensional particle-in-cell simulations of reconnection in magnetically dominated electron-positron plasmas subject to strong Compton cooling. We vary the magnetization $sigmagg1$, defined as the ratio of magnetic tension to plasma in ertia, and the strength of cooling losses. Magnetic reconnection under such conditions can operate in magnetically dominated coronae around accreting black holes, which produce hard X-rays through Comptonization of seed soft photons. We find that the particle energy spectrum is dominated by a peak at mildly relativistic energies, which results from bulk motions of cooled plasmoids. The peak has a quasi-Maxwellian shape with an effective temperature of $sim 100$ keV, which depends only weakly on the flow magnetization and the strength of radiative cooling. The mean bulk energy of the reconnected plasma is roughly independent of $sigma$, whereas the variance is larger for higher magnetizations. The spectra also display a high-energy tail, which receives $sim 25$% of the dissipated reconnection power for $sigma=10$ and $sim 40$% for $sigma=40$. We complement our particle-in-cell studies with a Monte-Carlo simulation of the transfer of seed soft photons through the reconnection layer, and find the escaping X-ray spectrum. The simulation demonstrates that Comptonization is dominated by the bulk motions in the chain of Compton-cooled plasmoids and, for $sigmasim 10$, yields a spectrum consistent with the typical hard state of accreting black holes.
187 - D. Tsiklauri 2012
The process of particle acceleration by left-hand, circularly polarised inertial Alfven waves (IAW) in a transversely inhomogeneous plasma is studied using 3D particle-in-cell simulation. A cylindrical tube with, transverse to the background magnetic field, inhomogeneity scale of the order of ion inertial length is considered on which IAWs with frequency $0.3 omega_{ci}$ are launched that are allowed to develop three wavelength. As a result time-varying parallel electric fields are generated in the density gradient regions which accelerate electrons in the parallel to magnetic field direction. Driven perpendicular electric field of IAWs also heats ions in the transverse direction. Such numerical setup is relevant for solar flaring loops and earth auroral zone. This first, 3D, fully-kinetic simulation demonstrates electron acceleration efficiency in the density inhomogeneity regions, along the magnetic field, of the order of 45% and ion heating, in the transverse to the magnetic field direction, of 75%. The latter is a factor of two times higher than the previous 2.5D analogous study and is in accordance with solar flare particle acceleration observations. We find that the generated parallel electric field is localised in the density inhomogeneity region and rotates in the same direction and with the same angular frequency as the initially launched IAW. Our numerical simulations seem also to suggest that the knee often found in the solar flare electron spectra can alternatively be interpreted as the Landau damping (Cerenkov resonance effect) of IAWs due to the wave-particle interactions.
145 - D. Tsiklauri 2011
Dispersive Alfven waves (DAWs) offer, an alternative to magnetic reconnection, opportunity to accelerate solar flare particles. We study the effect of DAW polarisation, L-, R-, circular and elliptical, in different regimes inertial and kinetic on the efficiency of particle acceleration. We use 2.5D PIC simulations to study how particles are accelerated when DAW, triggered by a solar flare, propagates in transversely inhomogeneous plasma that mimics solar coronal loop. (i) In inertial regime, fraction of accelerated electrons (along the magnetic field), in density gradient regions is ~20% by the time when DAW develops 3 wavelengths and is increasing to ~30% by the time DAW develops 13 wavelengths. In all considered cases ions are heated in transverse to the magnetic field direction and fraction of the heated particles is ~35%. (ii) The case of R-circular, L- and R- elliptical polarisation DAWs, with the electric field in the non-ignorable transverse direction exceeding several times that of in the ignorable direction, produce more pronounced parallel electron beams and transverse ion beams in the ignorable direction. In the inertial regime such polarisations yield the fraction of accelerated electrons ~20%. In the kinetic regime this increases to ~35%. (iii) The parallel electric field that is generated in the density inhomogeneity regions is independent of m_i/m_e and exceeds the Dreicer value by 8 orders of magnitude. (iv) Electron beam velocity has the phase velocity of the DAW. Thus electron acceleration is via Landau damping of DAWs. For the Alfven speeds of 0.3c the considered mechanism can accelerate electrons to energies circa 20 keV. (v) The increase of mass ratio from m_i/m_e=16 to 73.44 increases the fraction of accelerated electrons from 20% to 30-35% (depending on DAW polarisation). For the mass ratio m_i/m_e=1836 the fraction of accelerated electrons would be >35%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا