ﻻ يوجد ملخص باللغة العربية
Magnetic energy around compact objects often dominates over plasma rest mass, and its dissipation can power the object luminosity. We describe a dissipation mechanism which works faster than magnetic reconnection. The mechanism involves two strong Alfven waves with anti-aligned magnetic fields $boldsymbol{B}_1$ and $boldsymbol{B}_2$ that propagate in opposite directions along background magnetic field $boldsymbol{B}_0$ and collide. The collision forms a thin current sheet perpendicular to $boldsymbol{B}_0$, which absorbs the incoming waves. The current sheet is sustained by electric field $boldsymbol{E}$ breaking the magnetohydrodynamic condition $E<B$ and accelerating particles to high energies. We demonstrate this mechanism with kinetic plasma simulations using a simple setup of two symmetric plane waves with amplitude $A=B_1/B_0=B_2/B_0$ propagating in a uniform $boldsymbol{B}_0$. The mechanism is activated when $A>1/2$. It dissipates a large fraction of the wave energy, $f=(2A-1)/A^2$, reaching $100%$ when $A=1$. The plane geometry allows one to see the dissipation process in a one-dimensional simulation. We also perform two-dimensional simulations, enabling spontaneous breaking of the plane symmetry by the tearing instability of the current sheet. At moderate $A$ of main interest the tearing instability is suppressed. Dissipation transitions to normal, slower, magnetic reconnection at $Agg 1$. The fast dissipation described in this paper may occur in various objects with perturbed magnetic fields, including magnetars, jets from accreting black holes, and pulsar wind nebulae.
Basic properties of relativistic magnetic reconnection in electron-positron pair plasmas are investigated by using a particle-in-cell (PIC) simulation. We first revisit a problem by Hesse & Zenitani (2007), who examined the kinetic Ohms law across th
The extreme properties of the gamma ray flares in the Crab Nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type
We perform two-dimensional particle-in-cell simulations of reconnection in magnetically dominated electron-positron plasmas subject to strong Compton cooling. We vary the magnetization $sigmagg1$, defined as the ratio of magnetic tension to plasma in
The process of particle acceleration by left-hand, circularly polarised inertial Alfven waves (IAW) in a transversely inhomogeneous plasma is studied using 3D particle-in-cell simulation. A cylindrical tube with, transverse to the background magnetic
Dispersive Alfven waves (DAWs) offer, an alternative to magnetic reconnection, opportunity to accelerate solar flare particles. We study the effect of DAW polarisation, L-, R-, circular and elliptical, in different regimes inertial and kinetic on the