ﻻ يوجد ملخص باللغة العربية
Dispersive Alfven waves (DAWs) offer, an alternative to magnetic reconnection, opportunity to accelerate solar flare particles. We study the effect of DAW polarisation, L-, R-, circular and elliptical, in different regimes inertial and kinetic on the efficiency of particle acceleration. We use 2.5D PIC simulations to study how particles are accelerated when DAW, triggered by a solar flare, propagates in transversely inhomogeneous plasma that mimics solar coronal loop. (i) In inertial regime, fraction of accelerated electrons (along the magnetic field), in density gradient regions is ~20% by the time when DAW develops 3 wavelengths and is increasing to ~30% by the time DAW develops 13 wavelengths. In all considered cases ions are heated in transverse to the magnetic field direction and fraction of the heated particles is ~35%. (ii) The case of R-circular, L- and R- elliptical polarisation DAWs, with the electric field in the non-ignorable transverse direction exceeding several times that of in the ignorable direction, produce more pronounced parallel electron beams and transverse ion beams in the ignorable direction. In the inertial regime such polarisations yield the fraction of accelerated electrons ~20%. In the kinetic regime this increases to ~35%. (iii) The parallel electric field that is generated in the density inhomogeneity regions is independent of m_i/m_e and exceeds the Dreicer value by 8 orders of magnitude. (iv) Electron beam velocity has the phase velocity of the DAW. Thus electron acceleration is via Landau damping of DAWs. For the Alfven speeds of 0.3c the considered mechanism can accelerate electrons to energies circa 20 keV. (v) The increase of mass ratio from m_i/m_e=16 to 73.44 increases the fraction of accelerated electrons from 20% to 30-35% (depending on DAW polarisation). For the mass ratio m_i/m_e=1836 the fraction of accelerated electrons would be >35%.
The process of particle acceleration by left-hand, circularly polarised inertial Alfven waves (IAW) in a transversely inhomogeneous plasma is studied using 3D particle-in-cell simulation. A cylindrical tube with, transverse to the background magnetic
In the previous works harmonic, phase-mixed, Alfven wave dynamics was considered both in the kinetic and magnetohydrodynamic regimes. Up today only magnetohydrodynamic, phase-mixed, Gaussian Alfven pulses were investigated. In the present work we ext
A possible solution to the unexplained high intensity hard x-ray (HXR) emission observable during solar flares was investigated via 3D fully relativistic, electromagnetic particle-in-cell (PIC) simulations with realistic ion to electron mass ratio. A
Nonthermal relativistic plasmas are ubiquitous in astrophysical systems like pulsar wind nebulae and active galactic nuclei, as inferred from their emission spectra. The underlying nonthermal particle acceleration (NTPA) processes have traditionally
Previous studies [Malara et al ApJ, 533, 523 (2000)] considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. In this work linearly polarised Alfven wave dynamics in ABC magnetic f