ترغب بنشر مسار تعليمي؟ اضغط هنا

Gapless spin liquids in disguise

91   0   0.0 ( 0 )
 نشر من قبل Francesco Ferrari
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that gapless spin liquids, which are potential candidates to describe the ground state of frustrated Heisenberg models in two dimensions, become trivial insulators on cylindrical geometries with an even number of legs. In particular, we report calculations for Gutzwiller-projected fermionic states on strips of square and kagome lattices. By choosing different boundary conditions for the fermionic degrees of freedom, both gapless and gapped states may be realized, the latter ones having a lower variational energy. The direct evaluation of static and dynamical correlation functions, as well as overlaps between different states, allows us to demonstrate the sharp difference between the ground-state properties obtained within cylinders or directly in the two-dimensional lattice. Our results shed light on the difficulty to detect bona fide gapless spin liquids in such cylindrical geometries.



قيم البحث

اقرأ أيضاً

The spin ice materials, including Ho2Ti2O7 and Dy2Ti2O7, are rare earth pyrochlore magnets which, at low temperatures, enter a constrained paramagnetic state with an emergent gauge freedom. Remarkably, the spin ices provide one of very few experiment ally realised examples of fractionalization because their elementary excitations can be regarded as magnetic monopoles and, over some temperature range, the spin ice materials are best described as liquids of these emergent charges. In the presence of quantum fluctuations, one can obtain, in principle, a quantum spin liquid descended from the classical spin ice state characterised by emergent photon-like excitations. Whereas in classical spin ices the excitations are akin to electrostatic charges, in the quantum spin liquid these charges interact through a dynamic and emergent electromagnetic field. In this review, we describe the latest developments in the study of such a quantum spin ice, focussing on the spin liquid phenomenology and the kinds of materials where such a phase might be found.
We investigate spin chains with bilinear-biquadratic spin interactions as a function of an applied magnetic field $h$. At the Uimin-Lai-Sutherland (ULS) critical point we find a remarkable hierarchy of fractionalized excitations revealed by the dynam ical structure factor $S(q,omega)$ as a function of magnetic field yielding a transition from a gapless phase to another gapless phase before reaching the fully polarized state. At $h=0$, the envelope of the lowest energy excitations goes soft at two points $q_1=2pi/3$ and $q_2=4pi/3$, dubbed the A-phase. With increasing field, the spectral peaks at each of the gapless points bifurcate and combine to form a new set of fractionalized excitations that soften at a single point $q=pi$ at $h_{c1}approx 0.94$. Beyond $h_{c1}$ the system remains in this phase dubbed the B-phase until the transition at $h_{c2}=4$ to the fully polarized phase. We discuss the central charge of these two gapless phases and contrast the behavior with that of the gapped Haldane phase in a field.
200 - Michael Lawler 2008
Recent experiments indicate that Na$_4$Ir$_3$O$_8$, a material in which s=1/2 iridium local moments form a three dimensional network of corner-sharing triangles, may have a quantum spin liquid ground state with gapless spin excitations. Using a combi nation of exact diagonalization, symmetry analysis of fermionic mean field ground states and Gutzwiller projected variational wavefunction studies, we propose a quantum spin liquid with spinon Fermi surfaces as a favorable candidate for the ground state of the Heisenberg model on the hyper-kagome lattice of Na$_4$Ir$_3$O$_8$. We present a renormalized mean field theory of the specific heat of this spin liquid and also discuss possible low temperature instabilities of the spinon Fermi surfaces.
Quantum spin liquid (QSL) is a novel state of matter with exotic excitations and was theoretically predicted to be realized most possibly in an S=1/2 kagome antiferromagnet. Experimentally searching for the candidate materials is a big challenge in c ondensed matter physics and only two such candidates were reported so far. Here we report the successful synthesis of a new spin-1/2 kagome antiferromagnet ZnCu3(OH)6SO4. No magnetic ordering is observed down to 50 mK, despite a moderately high Weiss temperature of {theta}W ~ -79 K. It strongly suggests that the material is a new QSL candidate. Most interestingly, the magnetic specific heat clearly exhibits linear behaviors in two low-temperature regions. Both behaviors exactly correspond to two temperature-independent susceptibilities. These consistently reveal a novel re-entrance phenomenon of gapless QSL state at the lowest temperatures. The findings provide new insights into QSL ground and excited states and will inspire new theoretical and experimental studies.
Spin liquids are quantum phases of matter that exhibit a variety of novel features associated with their topological character. These include various forms of fractionalization - elementary excitations that behave as fractions of an electron. While t here is not yet entirely convincing experimental evidence that any particular material has a spin liquid ground state, in the past few years, increasing evidence has accumulated for a number of materials suggesting that they have characteristics strongly reminiscent of those expected for a quantum spin liquid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا