ﻻ يوجد ملخص باللغة العربية
Quantum spin liquid (QSL) is a novel state of matter with exotic excitations and was theoretically predicted to be realized most possibly in an S=1/2 kagome antiferromagnet. Experimentally searching for the candidate materials is a big challenge in condensed matter physics and only two such candidates were reported so far. Here we report the successful synthesis of a new spin-1/2 kagome antiferromagnet ZnCu3(OH)6SO4. No magnetic ordering is observed down to 50 mK, despite a moderately high Weiss temperature of {theta}W ~ -79 K. It strongly suggests that the material is a new QSL candidate. Most interestingly, the magnetic specific heat clearly exhibits linear behaviors in two low-temperature regions. Both behaviors exactly correspond to two temperature-independent susceptibilities. These consistently reveal a novel re-entrance phenomenon of gapless QSL state at the lowest temperatures. The findings provide new insights into QSL ground and excited states and will inspire new theoretical and experimental studies.
The topological quantum spin liquids (SL) and the nature of quantum phase transitions between them have attracted intensive attentions for the past twenty years. The extended kagome spin-1/2 antiferromagnet emerges as the primary candidate for hostin
The $S$ = $frac{1}{2}$ kagome Heisenberg antiferromagnet (KHA) is a leading model hosting a quantum spin liquid (QSL), but the exact nature of its ground state remains a key issue under debate. In the previously well-studied candidate materials, magn
We report a comprehensive investigation of the magnetism of the $S$ = 3/2 triangular-lattice antiferromagnet, $alpha$-CrOOH(D) (delafossites green-grey powder). The nearly Heisenberg antiferromagnetic Hamiltonian ($J_1$ $sim$ 23.5 K) with a weak sing
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the success
We study the spin-$1/2$ Heisenberg model on the triangular lattice with the nearest-neighbor $J_1 > 0$, the next-nearest-neighobr $J_2 > 0$ Heisenberg interactions, and the additional scalar chiral interaction $J_{chi}(vec{S}_i times vec{S}_j) cdot v