ترغب بنشر مسار تعليمي؟ اضغط هنا

Re-entrance of Gapless Quantum Spin Liquids Observed in a Newly Synthesized Spin-1/2 Kagome Antiferromagnet $ZnCu_{3}(OH)_{6}SO_{4}$

192   0   0.0 ( 0 )
 نشر من قبل Qing-Ming Zhang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum spin liquid (QSL) is a novel state of matter with exotic excitations and was theoretically predicted to be realized most possibly in an S=1/2 kagome antiferromagnet. Experimentally searching for the candidate materials is a big challenge in condensed matter physics and only two such candidates were reported so far. Here we report the successful synthesis of a new spin-1/2 kagome antiferromagnet ZnCu3(OH)6SO4. No magnetic ordering is observed down to 50 mK, despite a moderately high Weiss temperature of {theta}W ~ -79 K. It strongly suggests that the material is a new QSL candidate. Most interestingly, the magnetic specific heat clearly exhibits linear behaviors in two low-temperature regions. Both behaviors exactly correspond to two temperature-independent susceptibilities. These consistently reveal a novel re-entrance phenomenon of gapless QSL state at the lowest temperatures. The findings provide new insights into QSL ground and excited states and will inspire new theoretical and experimental studies.



قيم البحث

اقرأ أيضاً

443 - W. Zhu , S. S. Gong , 2014
The topological quantum spin liquids (SL) and the nature of quantum phase transitions between them have attracted intensive attentions for the past twenty years. The extended kagome spin-1/2 antiferromagnet emerges as the primary candidate for hostin g both time reversal symmetry (TRS) preserving and TRS breaking SLs based on density matrix renormalization group simulations. To uncover the nature of the novel quantum phase transition between the SL states, we study a minimum XY model with the nearest neighbor (NN) ($J_{xy}$), the second and third NN couplings ($J_{2xy}=J_{3xy}=J_{xy}$). We identify the TRS broken chiral SL (CSL) with the turn on of a small perturbation $J_{xy}sim 0.06 J_{xy}$, which is fully characterized by the fractionally quantized topological Chern number and the conformal edge spectrum as the $ u=1/2$ fractional quantum Hall state. On the other hand, the NN XY model ($J_{xy}=0$) is shown to be a critical SL state adjacent to the CSL, characterized by the gapless spin singlet excitations and also vanishing small spin triplet excitations. The quantum phase transition from the CSL to the gapless critical SL is driven by the collapsing of the neutral (spin singlet) excitation gap. By following the evolution of entanglement spectrum, we find that the transition takes place through the coupling of the edge states with opposite chiralities, which merge into the bulk and become gapless neutral excitations. The effect of the NN spin-$z$ coupling $J_z$ is also studied, which leads to a quantum phase diagram with an extended regime for the gapless SL.
165 - Jiabin Liu , Long Yuan , Xuan Li 2021
The $S$ = $frac{1}{2}$ kagome Heisenberg antiferromagnet (KHA) is a leading model hosting a quantum spin liquid (QSL), but the exact nature of its ground state remains a key issue under debate. In the previously well-studied candidate materials, magn etic defects always dominate the low-energy spectrum and hinder the detection of the intrinsic nature. We demonstrate that the new single crystal of YCu$_3$[OH(D)]$_{6.5}$Br$_{2.5}$ is a perfect KHA without evident magnetic defects ($ll$ 0.8%). Through fitting the magnetic susceptibilities of the orientated single crystals, we find the spin system with weak anisotropic interactions and with first-, second-, and third-neighbor couplings, $J_1$ $sim$ 56 K and $J_2$ $sim$ $J_3$ $sim$ 0.1$J_1$, belongs to the continuous family of fully frustrated KHAs. No conventional freezing is observed down to 0.36 K $sim$ 0.006$J_1$, and the raw specific heat exhibits a nearly quadratic temperature dependence below 1 K $sim$ 0.02$J_1$, well consistent with a gapless (spin gap $leq$ 0.025$J_1$) Dirac QSL.
We report a comprehensive investigation of the magnetism of the $S$ = 3/2 triangular-lattice antiferromagnet, $alpha$-CrOOH(D) (delafossites green-grey powder). The nearly Heisenberg antiferromagnetic Hamiltonian ($J_1$ $sim$ 23.5 K) with a weak sing le-ion anisotropy of $|D|$/$J_1$ $sim$ 4.6% is quantitatively determined by fitting to the electron spin resonance (ESR) linewidth and susceptibility measured at high temperatures. The weak single-ion anisotropy interactions, possibly along with other perturbations, e.g. next-nearest-neighbor interactions, suppress the long-range magnetic order and render the system disordered, as evidenced by both the absence of any clear magnetic reflections in neutron diffraction and the presence of the dominant paramagnetic ESR signal down to 2 K ($sim$ 0.04$J_1$$S^2$), where the magnetic entropy is almost zero. The power-law behavior of specific heat ($C_m$ $sim$ $T^{2.2}$) observed below the freezing temperature of $T_f$ = 25 K in $alpha$-CrOOH or below $T_f$ = 22 K in $alpha$-CrOOD is insensitive to the external magnetic field, and thus is consistent with the theoretical prediction of a gapless U(1) Dirac quantum spin liquid (QSL) ground state. At low temperatures, the spectral weight of the low-energy continuous spin excitations accumulates at the K points of the Brillouin zone, e.g. $|mathbf{Q}|$ = 4$pi$/(3$a$), and the putative Dirac cones are clearly visible. Our work is a first step towards the understanding of the possible Dirac QSL ground state in this triangular-lattice magnet with $S$ = 3/2.
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the success ful synthesis of a new spin-1/2 triangular antiferromagnet YbMgGaO$_4$ with R$bar{3}$m symmetry. The compound with an ideal two-dimensional and spatial isotropic magnetic triangular-lattice has no site-mixing magnetic defects and no antisymmetric Dzyaloshinsky-Moriya (DM) interactions. No spin freezing down to 60 mK (despite $Theta$$_w$ $sim$ -4 K), the low-T power-law temperature dependence of heat capacity and nonzero susceptibility suggest that YbMgGaO$_4$ is a promising gapless ($leq$ $|$$Theta$$_w$$|$/100) QSL candidate. The residual spin entropy, which is accurately determined with a non-magnetic reference LuMgGaO$_4$, approaches zero ($<$ 0.6 %). This indicates that the possible QSL ground state (GS) of the frustrated spin system has been experimentally achieved at the lowest measurement temperatures.
199 - Shou-Shu Gong , W. Zhu , J.-X. Zhu 2017
We study the spin-$1/2$ Heisenberg model on the triangular lattice with the nearest-neighbor $J_1 > 0$, the next-nearest-neighobr $J_2 > 0$ Heisenberg interactions, and the additional scalar chiral interaction $J_{chi}(vec{S}_i times vec{S}_j) cdot v ec{S}_k$ for the three spins in all the triangles using large-scale density matrix renormalization group calculation on cylinder geometry. With increasing $J_2$ ($J_2/J_1 leq 0.3$) and $J_{chi}$ ($J_{chi}/J_1 leq 1.0$) interactions, we establish a quantum phase diagram with the magnetically ordered $120^{circ}$ phase, stripe phase, and non-coplanar tetrahedral phase. In between these magnetic order phases, we find a chiral spin liquid (CSL) phase, which is identified as a $ u = 1/2$ bosonic fractional quantum Hall state with possible spontaneous rotational symmetry breaking. By switching on the chiral interaction, we find that the previously identified spin liquid in the $J_1 - J_2$ triangular model ($0.08 lesssim J_2/J_1 lesssim 0.15$) shows a phase transition to the CSL phase at very small $J_{chi}$. We also compute spin triplet gap in both spin liquid phases, and our finite-size results suggest large gap in the odd topological sector but small or vanishing gap in the even sector. We discuss the implications of our results to the nature of the spin liquid phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا