ﻻ يوجد ملخص باللغة العربية
Motivated by the need for decentralized learning, this paper aims at designing a distributed algorithm for solving nonconvex problems with general linear constraints over a multi-agent network. In the considered problem, each agent owns some local information and a local variable for jointly minimizing a cost function, but local variables are coupled by linear constraints. Most of the existing methods for such problems are only applicable for convex problems or problems with specific linear constraints. There still lacks a distributed algorithm for such problems with general linear constraints and under nonconvex setting. In this paper, to tackle this problem, we propose a new algorithm, called proximal dual consensus (PDC) algorithm, which combines a proximal technique and a dual consensus method. We build the theoretical convergence conditions and show that the proposed PDC algorithm can converge to an $epsilon$-Karush-Kuhn-Tucker solution within $mathcal{O}(1/epsilon)$ iterations. For computation reduction, the PDC algorithm can choose to perform cheap gradient descent per iteration while preserving the same order of $mathcal{O}(1/epsilon)$ iteration complexity. Numerical results are presented to demonstrate the good performance of the proposed algorithms for solving a regression problem and a classification problem over a network where agents have only partial observations of data features.
Numerical tools for constraints solving are a cornerstone to control verification problems. This is evident by the plethora of research that uses tools like linear and convex programming for the design of control systems. Nevertheless, the capability
This paper considers decentralized minimization of $N:=nm$ smooth non-convex cost functions equally divided over a directed network of $n$ nodes. Specifically, we describe a stochastic first-order gradient method, called GT-SARAH, that employs a SARA
The basic reproduction number $R_0$ is a fundamental quantity in epidemiological modeling, reflecting the typical number of secondary infections that arise from a single infected individual. While $R_0$ is widely known to scientists, policymakers, an
In decentralized optimization, multiple nodes in a network collaborate to minimize the sum of their local loss functions. The information exchange between nodes required for this task, is often limited by network connectivity. We consider a setting i
This paper presents an efficient suboptimal model predictive control (MPC) algorithm for nonlinear switched systems subject to minimum dwell time constraints (MTC). While MTC are required for most physical systems due to stability, power and mechanic