ترغب بنشر مسار تعليمي؟ اضغط هنا

BERTese: Learning to Speak to BERT

99   0   0.0 ( 0 )
 نشر من قبل Adi Haviv
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large pre-trained language models have been shown to encode large amounts of world and commonsense knowledge in their parameters, leading to substantial interest in methods for extracting that knowledge. In past work, knowledge was extracted by taking manually-authored queries and gathering paraphrases for them using a separate pipeline. In this work, we propose a method for automatically rewriting queries into BERTese, a paraphrase query that is directly optimized towards better knowledge extraction. To encourage meaningful rewrites, we add auxiliary loss functions that encourage the query to correspond to actual language tokens. We empirically show our approach outperforms competing baselines, obviating the need for complex pipelines. Moreover, BERTese provides some insight into the type of language that helps language models perform knowledge extraction.

قيم البحث

اقرأ أيضاً

We introduce a large scale crowdsourced text adventure game as a research platform for studying grounded dialogue. In it, agents can perceive, emote, and act whilst conducting dialogue with other agents. Models and humans can both act as characters w ithin the game. We describe the results of training state-of-the-art generative and retrieval models in this setting. We show that in addition to using past dialogue, these models are able to effectively use the state of the underlying world to condition their predictions. In particular, we show that grounding on the details of the local environment, including location descriptions, and the objects (and their affordances) and characters (and their previous actions) present within it allows better predictions of agent behavior and dialogue. We analyze the ingredients necessary for successful grounding in this setting, and how each of these factors relate to agents that can talk and act successfully.
Pre-trained language models (e.g., BERT) have achieved significant success in various natural language processing (NLP) tasks. However, high storage and computational costs obstruct pre-trained language models to be effectively deployed on resource-c onstrained devices. In this paper, we propose a novel BERT distillation method based on many-to-many layer mapping, which allows each intermediate student layer to learn from any intermediate teacher layers. In this way, our model can learn from different teacher layers adaptively for various NLP tasks. %motivated by the intuition that different NLP tasks require different levels of linguistic knowledge contained in the intermediate layers of BERT. In addition, we leverage Earth Movers Distance (EMD) to compute the minimum cumulative cost that must be paid to transform knowledge from teacher network to student network. EMD enables the effective matching for many-to-many layer mapping. %EMD can be applied to network layers with different sizes and effectively measures semantic distance between the teacher network and student network. Furthermore, we propose a cost attention mechanism to learn the layer weights used in EMD automatically, which is supposed to further improve the models performance and accelerate convergence time. Extensive experiments on GLUE benchmark demonstrate that our model achieves competitive performance compared to strong competitors in terms of both accuracy and model compression.
Recently developed large pre-trained language models, e.g., BERT, have achieved remarkable performance in many downstream natural language processing applications. These pre-trained language models often contain hundreds of millions of parameters and suffer from high computation and latency in real-world applications. It is desirable to reduce the computation overhead of the models for fast training and inference while keeping the model performance in downstream applications. Several lines of work utilize knowledge distillation to compress the teacher model to a smaller student model. However, they usually discard the teachers knowledge when in inference. Differently, in this paper, we propose RefBERT to leverage the knowledge learned from the teacher, i.e., facilitating the pre-computed BERT representation on the reference sample and compressing BERT into a smaller student model. To guarantee our proposal, we provide theoretical justification on the loss function and the usage of reference samples. Significantly, the theoretical result shows that including the pre-computed teachers representations on the reference samples indeed increases the mutual information in learning the student model. Finally, we conduct the empirical evaluation and show that our RefBERT can beat the vanilla TinyBERT over 8.1% and achieves more than 94% of the performance of $BERTBASE$ on the GLUE benchmark. Meanwhile, RefBERT is 7.4x smaller and 9.5x faster on inference than BERT$_{rm BASE}$.
387 - Yuxin Liang , Rui Cao , Jie Zheng 2021
Pre-trained language models such as BERT have become a more common choice of natural language processing (NLP) tasks. Research in word representation shows that isotropic embeddings can significantly improve performance on downstream tasks. However, we measure and analyze the geometry of pre-trained BERT embedding and find that it is far from isotropic. We find that the word vectors are not centered around the origin, and the average cosine similarity between two random words is much higher than zero, which indicates that the word vectors are distributed in a narrow cone and deteriorate the representation capacity of word embedding. We propose a simple, and yet effective method to fix this problem: remove several dominant directions of BERT embedding with a set of learnable weights. We train the weights on word similarity tasks and show that processed embedding is more isotropic. Our method is evaluated on three standardized tasks: word similarity, word analogy, and semantic textual similarity. In all tasks, the word embedding processed by our method consistently outperforms the original embedding (with average improvement of 13% on word analogy and 16% on semantic textual similarity) and two baseline methods. Our method is also proven to be more robust to changes of hyperparameter.
Despite pre-trained language models such as BERT have achieved appealing performance in a wide range of natural language processing tasks, they are computationally expensive to be deployed in real-time applications. A typical method is to adopt knowl edge distillation to compress these large pre-trained models (teacher models) to small student models. However, for a target domain with scarce training data, the teacher can hardly pass useful knowledge to the student, which yields performance degradation for the student models. To tackle this problem, we propose a method to learn to augment for data-scarce domain BERT knowledge distillation, by learning a cross-domain manipulation scheme that automatically augments the target with the help of resource-rich source domains. Specifically, the proposed method generates samples acquired from a stationary distribution near the target data and adopts a reinforced selector to automatically refine the augmentation strategy according to the performance of the student. Extensive experiments demonstrate that the proposed method significantly outperforms state-of-the-art baselines on four different tasks, and for the data-scarce domains, the compressed student models even perform better than the original large teacher model, with much fewer parameters (only ${sim}13.3%$) when only a few labeled examples available.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا