ترغب بنشر مسار تعليمي؟ اضغط هنا

Light-matter coupling and quantum geometry in moire materials

141   0   0.0 ( 0 )
 نشر من قبل Gabriel Elias Topp
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum geometry has been identified as an important ingredient for the physics of quantum materials and especially of flat-band systems, such as moire materials. On the other hand, the coupling between light and matter is of key importance across disciplines and especially for Floquet and cavity engineering of solids. Here we present fundamental relations between light-matter coupling and quantum geometry of Bloch wave functions, with a particular focus on flat-band and moire materials, in which the quenching of the electronic kinetic energy could allow one to reach the limit of strong light-matter coupling more easily than in highly dispersive systems. We show that, despite the fact that flat bands have vanishing band velocities and curvatures, light couples to them via geometric contributions. Specifically, the intra-band quantum metric allows diamagnetic coupling inside a flat band; the inter-band Berry connection governs dipole matrix elements between flat and dispersive bands. We illustrate these effects in two representative model systems: (i) a sawtooth quantum chain with a single flat band, and (ii) a tight-binding model for twisted bilayer graphene. For (i) we highlight the importance of quantum geometry by demonstrating a nonvanishing diamagnetic light-matter coupling inside the flat band. For (ii) we explore the twist-angle dependence of various light-matter coupling matrix elements. Furthermore, at the magic angle corresponding to almost flat bands, we show a Floquet-topological gap opening under irradiation with circularly polarized light despite the nearly vanishing Fermi velocity. We discuss how these findings provide fundamental design principles and tools for light-matter-coupling-based control of emergent electronic properties in flat-band and moire materials.



قيم البحث

اقرأ أيضاً

Cavity photon resonators with ultrastrong light-matter interactions are attracting interest both in semiconductor and superconducting systems displaying the capability to manipulate the cavity quantum electrodynamic ground state with controllable phy sical properties. Here we review a series of experiments aimed at probing the ultrastrong light-matter coupling regime, where the vacuum Rabi splitting $Omega$ is comparable to the bare transition frequency $omega$ . We present a new platform where the inter-Landau level transition of a two-dimensional electron gas (2DEG) is strongly coupled to the fundamental mode of deeply subwavelength split-ring resonators operating in the mm-wave range. Record-high values of the normalized light-matter coupling ratio $frac{Omega}{omega}= 0.89$ are reached and the system appears highly scalable far into the microwave range.
Realization of integrated photonic circuits on a single chip requires controlled manipulation and integration of solid-state quantum emitters with nanophotonic components. Previous works focused on emitters embedded in a three-dimensional crystals -- such as nanodiamonds or quantum dots. In contrast, in this work we demonstrate coupling of a single emitter in a two-dimensional (2D) material, namely hexagonal boron nitride (hBN), with a tapered optical fiber and find a collection efficiency of the system is found to be 10~%. Furthermore, due to the single dipole character of the emitter, we were able to analyse the angular emission pattern of the coupled system via back focal plane imaging. The good coupling efficiency to the tapered fiber even allows excitation and detection in a fully fiber coupled way yielding a true integrated system. Our results provide evidence of the feasibility to efficiently integrate quantum emitters in 2D materials with photonic structures.
The regime of strong light-matter coupling is typically associated with weak excitation. With current realizations of cavity-QED systems, strong coupling may persevere even at elevated excitation levels sufficient to cross the threshold to lasing. In the presence of stimulated emission, the vacuum-Rabi doublet in the emission spectrum is modified and the established criterion for strong coupling no longer applies. We provide a generalized criterion for strong coupling and the corresponding emission spectrum, which includes the influence of higher Jaynes-Cummings states. The applicability is demonstrated in a theory-experiment comparison of a few-emitter quantum-dot--micropillar laser as a particular realization of the driven dissipative Jaynes-Cummings model. Furthermore, we address the question if and for which parameters true single-emitter lasing can be achieved, and provide evidence for the coexistence of strong coupling and lasing in our system in the presence of background emitter contributions.
We investigate a theoretical model for a dynamic Moire grating which is capable of producing slow and stopped light with improved performance when compared with a static Moire grating. A Moire grating superimposes two grating periods which creates a narrow slow light resonance between two band gaps. A Moire grating can be made dynamic by varying its coupling strength in time. By increasing the coupling strength the reduction in group velocity in the slow light resonance can be improved by many orders of magnitude while still maintaining the wide bandwidth of the initial, weak grating. We show that for a pulse propagating through the grating this is a consequence of altering the pulse spectrum and therefore the grating can also perform bandwidth modulation. Finally we present a possible realization of the system via an electro-optic grating by applying a quasi-static electric field to a poled $chi^{(2)}$ nonlinear medium.
Moire lattices consist of two identical periodic structures overlaid with a relative rotation angle. Present even in everyday life, moire lattices have been also produced, e.g., with coupled graphene-hexagonal boron nitride monolayers, graphene-graph ene layers, and layers on a silicon carbide surface.A fundamental question that remains unexplored is the evolution of waves in the potentials defined by the moire lattices. Here we experimentally create two-dimensional photonic moire lattices, which, unlike their material predecessors, have readily controllable parameters and symmetry allowing to explore transitions between structures with fundamentally different geometries: periodic, general aperiodic and quasi-crystal ones. Equipped with such realization, we observe localization of light in deterministic linear lattices. Such localization is based on at band physics, in contrast to previous schemes based on light difusion in optical quasicrystals,where disorder is required for the onset of Anderson localization. Using commensurable and incommensurable moire patterns, we report the first experimental demonstration of two-dimensional localization-delocalization-transition (LDT) of light. Moire lattices may feature almost arbitrary geometry that is consistent with the crystallographic symmetry groups of the sublattices, and therefore afford a powerful tool to control the properties of light patterns, to explore the physics of transitions between periodic and aperiodic phases, and two-dimensional wavepacket phenomena relevant to several areas of science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا