ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasimodular forms and modular differential equations which are not apparent at cusps: I

152   0   0.0 ( 0 )
 نشر من قبل Yifan Yang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we explore a two-way connection between quasimodular forms of depth $1$ and a class of second-order modular differential equations with regular singularities on the upper half-plane and the cusps. Here we consider the cases $Gamma=Gamma_0^+(N)$ generated by $Gamma_0(N)$ and the Atkin-Lehner involutions for $N=1,2,3$ ($Gamma_0^+(1)=mathrm{SL}(2,mathbb Z)$). Firstly, we note that a quasimodular form of depth $1$, after divided by some modular form with the same weight, is a solution of a modular differential equation. Our main results are the converse of the above statement for the groups $Gamma_0^+(N)$, $N=1,2,3$.



قيم البحث

اقرأ أيضاً

182 - Robert C. Rhoades 2011
Families of quasimodular forms arise naturally in many situations such as curve counting on Abelian surfaces and counting ramified covers of orbifolds. In many cases the family of quasimodular forms naturally arises as the coefficients of a Taylor ex pansion of a Jacobi form. In this note we give examples of such expansions that arise in the study of partition statistics. The crank partition statistic has gathered much interest recently. For instance, Atkin and Garvan showed that the generating functions for the moments of the crank statistic are quasimodular forms. The two variable generating function for the crank partition statistic is a Jacobi form. Exploiting the structure inherent in the Jacobi theta function we construct explicit expressions for the functions of Atkin and Garvan. Furthermore, this perspective opens the door for further investigation including a study of the moments in arithmetic progressions. We conduct a thorough study of the crank statistic restricted to a residue class modulo 2.
192 - Yichao Zhang 2017
We establish an isomorphism between certain complex-valued and vector-valued modular form spaces of half-integral weight, generalizing the well-known isomorphism between modular forms for $Gamma_0(4)$ with Kohnens plus condition and modular forms for the Weil representation associated to the discriminant form for the lattice with Gram matrix $(2)$. With such an isomorphism, we prove the Zagier duality and write down the Borcherds lifts explicitly.
146 - Yichao Zhang 2013
In this note, we consider discriminant forms that are given by the norm form of real quadratic fields and their induced Weil representations. We prove that there exists an isomorphism between the space of vector-valued modular forms for the Weil repr esentations that are invariant under the action of the automorphism group and the space of scalar-valued modular forms that satisfy some epsilon-condition, with which we translate Borcherdss theorem of obstructions to scalar-valued modular forms. In the end, we consider an example in the case of level 12.
We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same $_2F_1$ hypergeometric function with different rational pullbacks. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus $_2F_1$ hypergeometric function example. We then focus on identities relating the same hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that emerged in a paper by Casale. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to $_3F_2$, hypergeometric functions, and show that one just reduces to the previous $_2F_1$ cases through a Clausen identity. In a $_2F_1$ hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or $_2F_1$ hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.
We discuss practical and some theoretical aspects of computing a database of classical modular forms in the L-functions and Modular Forms Database (LMFDB).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا