ﻻ يوجد ملخص باللغة العربية
Inferring the stereo structure of objects in the real world is a challenging yet practical task. To equip deep models with this ability usually requires abundant 3D supervision which is hard to acquire. It is promising that we can simply benefit from synthetic data, where pairwise ground-truth is easy to access. Nevertheless, the domain gaps are nontrivial considering the variant texture, shape and context. To overcome these difficulties, we propose a Visio-Perceptual Adaptive Network for single-view 3D reconstruction, dubbed VPAN. To generalize the model towards a real scenario, we propose to fulfill several aspects: (1) Look: visually incorporate spatial structure from the single view to enhance the expressiveness of representation; (2) Cast: perceptually align the 2D image features to the 3D shape priors with cross-modal semantic contrastive mapping; (3) Mold: reconstruct stereo-shape of target by transforming embeddings into the desired manifold. Extensive experiments on several benchmarks demonstrate the effectiveness and robustness of the proposed method in learning the 3D shape manifold from synthetic data via a single-view. The proposed method outperforms state-of-the-arts on Pix3D dataset with IoU 0.292 and CD 0.108, and reaches IoU 0.329 and CD 0.104 on Pascal 3D+.
Automated capture of animal pose is transforming how we study neuroscience and social behavior. Movements carry important social cues, but current methods are not able to robustly estimate pose and shape of animals, particularly for social animals su
In this paper, we introduce 3D-GMNet, a deep neural network for 3D object shape reconstruction from a single image. As the name suggests, 3D-GMNet recovers 3D shape as a Gaussian mixture. In contrast to voxels, point clouds, or meshes, a Gaussian mix
Despite significant progress in monocular depth estimation in the wild, recent state-of-the-art methods cannot be used to recover accurate 3D scene shape due to an unknown depth shift induced by shift-invariant reconstruction losses used in mixed-dat
A key challenge in the task of human pose and shape estimation is occlusion, including self-occlusions, object-human occlusions, and inter-person occlusions. The lack of diverse and accurate pose and shape training data becomes a major bottleneck, es
Articulated hand pose and shape estimation is an important problem for vision-based applications such as augmented reality and animation. In contrast to the existing methods which optimize only for joint positions, we propose a fully supervised deep