ﻻ يوجد ملخص باللغة العربية
Automated capture of animal pose is transforming how we study neuroscience and social behavior. Movements carry important social cues, but current methods are not able to robustly estimate pose and shape of animals, particularly for social animals such as birds, which are often occluded by each other and objects in the environment. To address this problem, we first introduce a model and multi-view optimization approach, which we use to capture the unique shape and pose space displayed by live birds. We then introduce a pipeline and experiments for keypoint, mask, pose, and shape regression that recovers accurate avian postures from single views. Finally, we provide extensive multi-view keypoint and mask annotations collected from a group of 15 social birds housed together in an outdoor aviary. The project website with videos, results, code, mesh model, and the Penn Aviary Dataset can be found at https://marcbadger.github.io/avian-mesh.
In this paper, we introduce 3D-GMNet, a deep neural network for 3D object shape reconstruction from a single image. As the name suggests, 3D-GMNet recovers 3D shape as a Gaussian mixture. In contrast to voxels, point clouds, or meshes, a Gaussian mix
Caricature is an artistic representation that deliberately exaggerates the distinctive features of a human face to convey humor or sarcasm. However, reconstructing a 3D caricature from a 2D caricature image remains a challenging task, mostly due to t
High-fidelity clothing reconstruction is the key to achieving photorealism in a wide range of applications including human digitization, virtual try-on, etc. Recent advances in learning-based approaches have accomplished unprecedented accuracy in rec
Much recent progress has been made in reconstructing the 3D shape of an object from an image of it, i.e. single view 3D reconstruction. However, it has been suggested that current methods simply adopt a nearest-neighbor strategy, instead of genuinely
This paper tackles the problem of estimating 3D body shape of clothed humans from single polarized 2D images, i.e. polarization images. Polarization images are known to be able to capture polarized reflected lights that preserve rich geometric cues o