ﻻ يوجد ملخص باللغة العربية
Although unsupervised person re-identification (Re-ID) has drawn increasing research attention recently, it remains challenging to learn discriminative features without annotations across disjoint camera views. In this paper, we address the unsupervised person Re-ID with a conceptually novel yet simple framework, termed as Multi-label Learning guided self-paced Clustering (MLC). MLC mainly learns discriminative features with three crucial modules, namely a multi-scale network, a multi-label learning module, and a self-paced clustering module. Specifically, the multi-scale network generates multi-granularity person features in both global and local views. The multi-label learning module leverages a memory feature bank and assigns each image with a multi-label vector based on the similarities between the image and feature bank. After multi-label training for several epochs, the self-paced clustering joins in training and assigns a pseudo label for each image. The benefits of our MLC come from three aspects: i) the multi-scale person features for better similarity measurement, ii) the multi-label assignment based on the whole dataset ensures that every image can be trained, and iii) the self-paced clustering removes some noisy samples for better feature learning. Extensive experiments on three popular large-scale Re-ID benchmarks demonstrate that our MLC outperforms previous state-of-the-art methods and significantly improves the performance of unsupervised person Re-ID.
Unsupervised person re-identification (re-ID) has become an important topic due to its potential to resolve the scalability problem of supervised re-ID models. However, existing methods simply utilize pseudo labels from clustering for supervision and
Person re-identification (re-ID) requires one to match images of the same person across camera views. As a more challenging task, semi-supervised re-ID tackles the problem that only a number of identities in training data are fully labeled, while the
Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a singl
Person re-identification (re-id) aims to match the same person from images taken across multiple cameras. Most existing person re-id methods generally require a large amount of identity labeled data to act as discriminative guideline for representati
Existing person re-identification (re-id) methods mostly rely on supervised model learning from a large set of person identity labelled training data per domain. This limits their scalability and usability in large scale deployments. In this work, we