ﻻ يوجد ملخص باللغة العربية
We present a straightforward and efficient way to control unstable robotic systems using an estimated dynamics model. Specifically, we show how to exploit the differentiability of Gaussian Processes to create a state-dependent linearized approximation of the true continuous dynamics that can be integrated with model predictive control. Our approach is compatible with most Gaussian process approaches for system identification, and can learn an accurate model using modest amounts of training data. We validate our approach by learning the dynamics of an unstable system such as a segway with a 7-D state space and 2-D input space (using only one minute of data), and we show that the resulting controller is robust to unmodelled dynamics and disturbances, while state-of-the-art control methods based on nominal models can fail under small perturbations. Code is open sourced at https://github.com/learning-and-control/core .
This paper proposes a novel framework for addressing the challenge of autonomous overtaking and obstacle avoidance, which incorporates the overtaking path planning into Gaussian Process-based model predictive control (GPMPC). Compared with the conven
Many robotics domains use some form of nonconvex model predictive control (MPC) for planning, which sets a reduced time horizon, performs trajectory optimization, and replans at every step. The actual task typically requires a much longer horizon tha
In this work, we consider the problem of deriving and incorporating accurate dynamic models for model predictive control (MPC) with an application to quadrotor control. MPC relies on precise dynamic models to achieve the desired closed-loop performan
The last half-decade has seen a steep rise in the number of contributions on safe learning methods for real-world robotic deployments from both the control and reinforcement learning communities. This article provides a concise but holistic review of
Reinforcement Learning (RL) and its integration with deep learning have achieved impressive performance in various robotic control tasks, ranging from motion planning and navigation to end-to-end visual manipulation. However, stability is not guarant