ترغب بنشر مسار تعليمي؟ اضغط هنا

Decision-Making under On-Ramp merge Scenarios by Distributional Soft Actor-Critic Algorithm

337   0   0.0 ( 0 )
 نشر من قبل Yang Guan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Merging into the highway from the on-ramp is an essential scenario for automated driving. The decision-making under the scenario needs to balance the safety and efficiency performance to optimize a long-term objective, which is challenging due to the dynamic, stochastic, and adversarial characteristics. The Rule-based methods often lead to conservative driving on this task while the learning-based methods have difficulties meeting the safety requirements. In this paper, we propose an RL-based end-to-end decision-making method under a framework of offline training and online correction, called the Shielded Distributional Soft Actor-critic (SDSAC). The SDSAC adopts the policy evaluation with safety consideration and a safety shield parameterized with the barrier function in its offline training and online correction, respectively. These two measures support each other for better safety while not damaging the efficiency performance severely. We verify the SDSAC on an on-ramp merge scenario in simulation. The results show that the SDSAC has the best safety performance compared to baseline algorithms and achieves efficient driving simultaneously.



قيم البحث

اقرأ أيضاً

In this paper, we propose a new reinforcement learning (RL) algorithm, called encoding distributional soft actor-critic (E-DSAC), for decision-making in autonomous driving. Unlike existing RL-based decision-making methods, E-DSAC is suitable for situ ations where the number of surrounding vehicles is variable and eliminates the requirement for manually pre-designed sorting rules, resulting in higher policy performance and generality. We first develop an encoding distributional policy iteration (DPI) framework by embedding a permutation invariant module, which employs a feature neural network (NN) to encode the indicators of each vehicle, in the distributional RL framework. The proposed DPI framework is proved to exhibit important properties in terms of convergence and global optimality. Next, based on the developed encoding DPI framework, we propose the E-DSAC algorithm by adding the gradient-based update rule of the feature NN to the policy evaluation process of the DSAC algorithm. Then, the multi-lane driving task and the corresponding reward function are designed to verify the effectiveness of the proposed algorithm. Results show that the policy learned by E-DSAC can realize efficient, smooth, and relatively safe autonomous driving in the designed scenario. And the final policy performance learned by E-DSAC is about three times that of DSAC. Furthermore, its effectiveness has also been verified in real vehicle experiments.
Reinforcement learning algorithms are highly sensitive to the choice of hyperparameters, typically requiring significant manual effort to identify hyperparameters that perform well on a new domain. In this paper, we take a step towards addressing thi s issue by using metagradients to automatically adapt hyperparameters online by meta-gradient descent (Xu et al., 2018). We apply our algorithm, Self-Tuning Actor-Critic (STAC), to self-tune all the differentiable hyperparameters of an actor-critic loss function, to discover auxiliary tasks, and to improve off-policy learning using a novel leaky V-trace operator. STAC is simple to use, sample efficient and does not require a significant increase in compute. Ablative studies show that the overall performance of STAC improved as we adapt more hyperparameters. When applied to the Arcade Learning Environment (Bellemare et al. 2012), STAC improved the median human normalized score in 200M steps from 243% to 364%. When applied to the DM Control suite (Tassa et al., 2018), STAC improved the mean score in 30M steps from 217 to 389 when learning with features, from 108 to 202 when learning from pixels, and from 195 to 295 in the Real-World Reinforcement Learning Challenge (Dulac-Arnold et al., 2020).
Reinforcement learning (RL) has achieved remarkable performance in numerous sequential decision making and control tasks. However, a common problem is that learned nearly optimal policy always overfits to the training environment and may not be exten ded to situations never encountered during training. For practical applications, the randomness of environment usually leads to some devastating events, which should be the focus of safety-critical systems such as autonomous driving. In this paper, we introduce the minimax formulation and distributional framework to improve the generalization ability of RL algorithms and develop the Minimax Distributional Soft Actor-Critic (Minimax DSAC) algorithm. Minimax formulation aims to seek optimal policy considering the most severe variations from environment, in which the protagonist policy maximizes action-value function while the adversary policy tries to minimize it. Distributional framework aims to learn a state-action return distribution, from which we can model the risk of different returns explicitly, thereby formulating a risk-averse protagonist policy and a risk-seeking adversarial policy. We implement our method on the decision-making tasks of autonomous vehicles at intersections and test the trained policy in distinct environments. Results demonstrate that our method can greatly improve the generalization ability of the protagonist agent to different environmental variations.
Object navigation is defined as navigating to an object of a given label in a complex, unexplored environment. In its general form, this problem poses several challenges for Robotics: semantic exploration of unknown environments in search of an objec t and low-level control. In this work we study object-guided exploration and low-level control, and present an end-to-end trained navigation policy achieving a success rate of 0.68 and SPL of 0.58 on unseen, visually complex scans of real homes. We propose a highly scalable implementation of an off-policy Reinforcement Learning algorithm, distributed Soft Actor Critic, which allows the system to utilize 98M experience steps in 24 hours on 8 GPUs. Our system learns to control a differential drive mobile base in simulation from a stack of high dimensional observations commonly used on robotic platforms. The learned policy is capable of object-guided exploratory behaviors and low-level control learned from pure experiences in realistic environments.
In reinforcement learning (RL), function approximation errors are known to easily lead to the Q-value overestimations, thus greatly reducing policy performance. This paper presents a distributional soft actor-critic (DSAC) algorithm, which is an off- policy RL method for continuous control setting, to improve the policy performance by mitigating Q-value overestimations. We first discover in theory that learning a distribution function of state-action returns can effectively mitigate Q-value overestimations because it is capable of adaptively adjusting the update stepsize of the Q-value function. Then, a distributional soft policy iteration (DSPI) framework is developed by embedding the return distribution function into maximum entropy RL. Finally, we present a deep off-policy actor-critic variant of DSPI, called DSAC, which directly learns a continuous return distribution by keeping the variance of the state-action returns within a reasonable range to address exploding and vanishing gradient problems. We evaluate DSAC on the suite of MuJoCo continuous control tasks, achieving the state-of-the-art performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا