ترغب بنشر مسار تعليمي؟ اضغط هنا

Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges

83   0   0.0 ( 0 )
 نشر من قبل Yoshitomo Matsubara
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Mobile devices such as smartphones and autonomous vehicles increasingly rely on deep neural networks (DNNs) to execute complex inference tasks such as image classification and speech recognition, among others. However, continuously executing the entire DNN on the mobile device can quickly deplete its battery. Although task offloading to edge servers may decrease the mobile devices computational burden, erratic patterns in channel quality, network and edge server load can lead to a significant delay in task execution. Recently,approaches based on split computing (SC) have been proposed, where the DNN is split into a head and a tail model, executed respectively on the mobile device and on the edge server. Ultimately, this may reduce bandwidth usage as well as energy consumption. Another approach, called early exiting (EE), trains models to present multiple exits earlier in the architecture, each providing increasingly higher target accuracy. Therefore, the trade-off between accuracy and delay can be tuned according to the current conditions or application demands. In this paper, we provide a comprehensive survey of the state of the art in SC and EE strategies, by presenting a comparison of the most relevant approaches. We conclude the paper by providing a set of compelling research challenges.

قيم البحث

اقرأ أيضاً

While machine learning and artificial intelligence have long been applied in networking research, the bulk of such works has focused on supervised learning. Recently there has been a rising trend of employing unsupervised machine learning using unstr uctured raw network data to improve network performance and provide services such as traffic engineering, anomaly detection, Internet traffic classification, and quality of service optimization. The interest in applying unsupervised learning techniques in networking emerges from their great success in other fields such as computer vision, natural language processing, speech recognition, and optimal control (e.g., for developing autonomous self-driving cars). Unsupervised learning is interesting since it can unconstrain us from the need of labeled data and manual handcrafted feature engineering thereby facilitating flexible, general, and automated methods of machine learning. The focus of this survey paper is to provide an overview of the applications of unsupervised learning in the domain of networking. We provide a comprehensive survey highlighting the recent advancements in unsupervised learning techniques and describe their applications for various learning tasks in the context of networking. We also provide a discussion on future directions and open research issues, while also identifying potential pitfalls. While a few survey papers focusing on the applications of machine learning in networking have previously been published, a survey of similar scope and breadth is missing in literature. Through this paper, we advance the state of knowledge by carefully synthesizing the insights from these survey papers while also providing contemporary coverage of recent advances.
Due to the availability of huge amounts of data and processing abilities, current artificial intelligence (AI) systems are effective in solving complex tasks. However, despite the success of AI in different areas, the problem of designing AI systems that can truly mimic human cognitive capabilities such as artificial general intelligence, remains largely open. Consequently, many emerging cross-device AI applications will require a transition from traditional centralized learning systems towards large-scale distributed AI systems that can collaboratively perform multiple complex learning tasks. In this paper, we propose a novel design philosophy called democratized learning (Dem-AI) whose goal is to build large-scale distributed learning systems that rely on the self-organization of distributed learning agents that are well-connected, but limited in learning capabilities. Correspondingly, inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently. As such, the Dem-AI learning system can evolve and regulate itself based on the underlying duality of two processes which we call specialized and generalized processes. In this regard, we present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields. Accordingly, we introduce four underlying mechanisms in the design such as plasticity-stability transition mechanism, self-organizing hierarchical structuring, specialized learning, and generalization. Finally, we establish possible extensions and new challenges for the existing learning approaches to provide better scalable, flexible, and more powerful learning systems with the new setting of Dem-AI.
The continual proliferation of mobile devices has encouraged much effort in using the smartphones for indoor positioning. This article is dedicated to review the most recent and interesting smartphones based indoor navigation systems, ranging from el ectromagnetic to inertia to visible light ones, with an emphasis on their unique challenges and potential real-world applications. A taxonomy of smartphones sensors will be introduced, which serves as the basis to categorise different positioning systems for reviewing. A set of criteria to be used for the evaluation purpose will be devised. For each sensor category, the most recent, interesting and practical systems will be examined, with detailed discussion on the open research questions for the academics, and the practicality for the potential clients.
Following the trends of mobile and edge computing for DNN models, an intermediate option, split computing, has been attracting attentions from the research community. Previous studies empirically showed that while mobile and edge computing often woul d be the best options in terms of total inference time, there are some scenarios where split computing methods can achieve shorter inference time. All the proposed split computing approaches, however, focus on image classification tasks, and most are assessed with small datasets that are far from the practical scenarios. In this paper, we discuss the challenges in developing split computing methods for powerful R-CNN object detectors trained on a large dataset, COCO 2017. We extensively analyze the object detectors in terms of layer-wise tensor size and model size, and show that naive split computing methods would not reduce inference time. To the best of our knowledge, this is the first study to inject small bottlenecks to such object detectors and unveil the potential of a split computing approach. The source code and trained models weights used in this study are available at https://github.com/yoshitomo-matsubara/hnd-ghnd-object-detectors .
As a simple technique to accelerate inference of large-scale pre-trained models, early exiting has gained much attention in the NLP community. It allows samples to exit early at internal classifiers without passing through the entire model. Most exis ting work usually trains the internal classifiers independently and employs an exiting strategy to decide whether or not to exit based on the confidence of the current internal classifier. However, none of these works takes full advantage of the fact that the internal classifiers are trained to solve the same task therefore can be used to construct an ensemble. In this paper, we show that a novel objective function for the training of the ensemble internal classifiers can be naturally induced from the perspective of ensemble learning and information theory. The proposed training objective consists of two terms: one for accuracy and the other for the diversity of the internal classifiers. In contrast, the objective used in prior work is exactly the accuracy term of our training objective therefore only optimizes the accuracy but not diversity. Further, we propose a simple voting-based strategy that considers predictions of all the past internal classifiers to infer the correct label and decide whether to exit. Experimental results on various NLP tasks show that our proposed objective function and voting-based strategy can achieve better accuracy-speed trade-offs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا