ﻻ يوجد ملخص باللغة العربية
We propose to use the difference in natural parameters (DINA) to quantify the heterogeneous treatment effect for exponential family models, in contrast to the difference in means. Similarly we model the hazard ratios for the Cox model. For binary outcomes and survival times, DINA is both convenient and perhaps more practical for modeling the covariates influences on the treatment effect. We introduce a DINA estimator that is insensitive to confounding and non-collapsibility issues, and allows practitioners to use powerful off-the-shelf machine learning tools for nuisance estimation. We use extensive simulations to demonstrate the efficacy of the proposed method with various response distributions and censoring mechanisms. We also apply the proposed method to the SPRINT dataset to estimate the heterogeneous treatment effect, demonstrate the methods robustness to nuisance estimation, and conduct a placebo evaluation.
Exponential-family random graph models (ERGMs) provide a principled way to model and simulate features common in human social networks, such as propensities for homophily and friend-of-a-friend triad closure. We show that, without adjustment, ERGMs p
Support vector machine (SVM) is one of the most popular classification algorithms in the machine learning literature. We demonstrate that SVM can be used to balance covariates and estimate average causal effects under the unconfoundedness assumption.
Exponential-family random graph models (ERGMs) provide a principled and flexible way to model and simulate features common in social networks, such as propensities for homophily, mutuality, and friend-of-a-friend triad closure, through choice of mode
Rank-order relational data, in which each actor ranks the others according to some criterion, often arise from sociometric measurements of judgment (e.g., self-reported interpersonal interaction) or preference (e.g., relative liking). We propose a cl
The functional linear model is a popular tool to investigate the relationship between a scalar/functional response variable and a scalar/functional covariate. We generalize this model to a functional linear mixed-effects model when repeated measureme