ﻻ يوجد ملخص باللغة العربية
Rank-order relational data, in which each actor ranks the others according to some criterion, often arise from sociometric measurements of judgment (e.g., self-reported interpersonal interaction) or preference (e.g., relative liking). We propose a class of exponential-family models for rank-order relational data and derive a new class of sufficient statistics for such data, which assume no more than within-subject ordinal properties. Application of MCMC MLE to this family allows us to estimate effects for a variety of plausible mechanisms governing rank structure in cross-sectional context, and to model the evolution of such structures over time. We apply this framework to model the evolution of relative liking judgments in an acquaintance process, and to model recall of relative volume of interpersonal interaction among members of a technology education program.
Exponential-family random graph models (ERGMs) provide a principled and flexible way to model and simulate features common in social networks, such as propensities for homophily, mutuality, and friend-of-a-friend triad closure, through choice of mode
Statistical models for networks with complex dependencies pose particular challenges for model selection and evaluation. In particular, many well-established statistical tools for selecting between models assume conditional independence of observatio
Exponential-family random graph models (ERGMs) provide a principled way to model and simulate features common in human social networks, such as propensities for homophily and friend-of-a-friend triad closure. We show that, without adjustment, ERGMs p
Exponential family Random Graph Models (ERGMs) can be viewed as expressing a probability distribution on graphs arising from the action of competing social forces that make ties more or less likely, depending on the state of the rest of the graph. Su
Generation of deviates from random graph models with non-trivial edge dependence is an increasingly important problem. Here, we introduce a method which allows perfect sampling from random graph models in exponential family form (exponential family r