ترغب بنشر مسار تعليمي؟ اضغط هنا

Greedy Hierarchical Variational Autoencoders for Large-Scale Video Prediction

176   0   0.0 ( 0 )
 نشر من قبل Bohan Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A video prediction model that generalizes to diverse scenes would enable intelligent agents such as robots to perform a variety of tasks via planning with the model. However, while existing video prediction models have produced promising results on small datasets, they suffer from severe underfitting when trained on large and diverse datasets. To address this underfitting challenge, we first observe that the ability to train larger video prediction models is often bottlenecked by the memory constraints of GPUs or TPUs. In parallel, deep hierarchical latent variable models can produce higher quality predictions by capturing the multi-level stochasticity of future observations, but end-to-end optimization of such models is notably difficult. Our key insight is that greedy and modular optimization of hierarchical autoencoders can simultaneously address both the memory constraints and the optimization challenges of large-scale video prediction. We introduce Greedy Hierarchical Variational Autoencoders (GHVAEs), a method that learns high-fidelity video predictions by greedily training each level of a hierarchical autoencoder. In comparison to state-of-the-art models, GHVAEs provide 17-55% gains in prediction performance on four video datasets, a 35-40% higher success rate on real robot tasks, and can improve performance monotonically by simply adding more modules.

قيم البحث

اقرأ أيضاً

Deep learning has enabled algorithms to generate realistic images. However, accurately predicting long video sequences requires understanding long-term dependencies and remains an open challenge. While existing video prediction models succeed at gene rating sharp images, they tend to fail at accurately predicting far into the future. We introduce the Clockwork VAE (CW-VAE), a video prediction model that leverages a hierarchy of latent sequences, where higher levels tick at slower intervals. We demonstrate the benefits of both hierarchical latents and temporal abstraction on 4 diverse video prediction datasets with sequences of up to 1000 frames, where CW-VAE outperforms top video prediction models. Additionally, we propose a Minecraft benchmark for long-term video prediction. We conduct several experiments to gain insights into CW-VAE and confirm that slower levels learn to represent objects that change more slowly in the video, and faster levels learn to represent faster objects.
Predicting the future in real-world settings, particularly from raw sensory observations such as images, is exceptionally challenging. Real-world events can be stochastic and unpredictable, and the high dimensionality and complexity of natural images requires the predictive model to build an intricate understanding of the natural world. Many existing methods tackle this problem by making simplifying assumptions about the environment. One common assumption is that the outcome is deterministic and there is only one plausible future. This can lead to low-quality predictions in real-world settings with stochastic dynamics. In this paper, we develop a stochastic variational video prediction (SV2P) method that predicts a different possible future for each sample of its latent variables. To the best of our knowledge, our model is the first to provide effective stochastic multi-frame prediction for real-world video. We demonstrate the capability of the proposed method in predicting detailed future frames of videos on multiple real-world datasets, both action-free and action-conditioned. We find that our proposed method produces substantially improved video predictions when compared to the same model without stochasticity, and to other stochastic video prediction methods. Our SV2P implementation will be open sourced upon publication.
Being able to predict what may happen in the future requires an in-depth understanding of the physical and causal rules that govern the world. A model that is able to do so has a number of appealing applications, from robotic planning to representati on learning. However, learning to predict raw future observations, such as frames in a video, is exceedingly challenging -- the ambiguous nature of the problem can cause a naively designed model to average together possible futures into a single, blurry prediction. Recently, this has been addressed by two distinct approaches: (a) latent variational variable models that explicitly model underlying stochasticity and (b) adversarially-trained models that aim to produce naturalistic images. However, a standard latent variable model can struggle to produce realistic results, and a standard adversarially-trained model underutilizes latent variables and fails to produce diverse predictions. We show that these distinct methods are in fact complementary. Combining the two produces predictions that look more realistic to human raters and better cover the range of possible futures. Our method outperforms prior and concurrent work in these aspects.
To synthesize a realistic action sequence based on a single human image, it is crucial to model both motion patterns and diversity in the action video. This paper proposes an Action Conditional Temporal Variational AutoEncoder (ACT-VAE) to improve mo tion prediction accuracy and capture movement diversity. ACT-VAE predicts pose sequences for an action clips from a single input image. It is implemented as a deep generative model that maintains temporal coherence according to the action category with a novel temporal modeling on latent space. Further, ACT-VAE is a general action sequence prediction framework. When connected with a plug-and-play Pose-to-Image (P2I) network, ACT-VAE can synthesize image sequences. Extensive experiments bear out our approach can predict accurate pose and synthesize realistic image sequences, surpassing state-of-the-art approaches. Compared to existing methods, ACT-VAE improves model accuracy and preserves diversity.
Much of recent research has been devoted to video prediction and generation, yet most of the previous works have demonstrated only limited success in generating videos on short-term horizons. The hierarchical video prediction method by Villegas et al . (2017) is an example of a state-of-the-art method for long-term video prediction, but their method is limited because it requires ground truth annotation of high-level structures (e.g., human joint landmarks) at training time. Our network encodes the input frame, predicts a high-level encoding into the future, and then a decoder with access to the first frame produces the predicted image from the predicted encoding. The decoder also produces a mask that outlines the predicted foreground object (e.g., person) as a by-product. Unlike Villegas et al. (2017), we develop a novel training method that jointly trains the encoder, the predictor, and the decoder together without highlevel supervision; we further improve upon this by using an adversarial loss in the feature space to train the predictor. Our method can predict about 20 seconds into the future and provides better results compared to Denton and Fergus (2018) and Finn et al. (2016) on the Human 3.6M dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا