ﻻ يوجد ملخص باللغة العربية
This paper bridges discrete and continuous optimization approaches for decomposable submodular function minimization, in both the standard and parametric settings. We provide improved running times for this problem by reducing it to a number of calls to a maximum flow oracle. When each function in the decomposition acts on $O(1)$ elements of the ground set $V$ and is polynomially bounded, our running time is up to polylogarithmic factors equal to that of solving maximum flow in a sparse graph with $O(vert V vert)$ vertices and polynomial integral capacities. We achieve this by providing a simple iterative method which can optimize to high precision any convex function defined on the submodular base polytope, provided we can efficiently minimize it on the base polytope corresponding to the cut function of a certain graph that we construct. We solve this minimization problem by lifting the solutions of a parametric cut problem, which we obtain via a new efficient combinatorial reduction to maximum flow. This reduction is of independent interest and implies some previously unknown bounds for the parametric minimum $s,t$-cut problem in multiple settings.
Submodular function minimization (SFM) is a fundamental discrete optimization problem which generalizes many well known problems, has applications in various fields, and can be solved in polynomial time. Owing to applications in computer vision and m
We consider submodular function minimization in the oracle model: given black-box access to a submodular set function $f:2^{[n]}rightarrow mathbb{R}$, find an element of $argmin_S {f(S)}$ using as few queries to $f(cdot)$ as possible. State-of-the-ar
In this paper we provide improved running times and oracle complexities for approximately minimizing a submodular function. Our main result is a randomized algorithm, which given any submodular function defined on $n$-elements with range $[-1, 1]$, c
It has been observed independently by many researchers that the isolating cut lemma of Li and Panigrahi [FOCS 2020] can be easily extended to obtain new algorithms for finding the non-trivial minimizer of a symmetric submodular function and solving t
Sequence optimization, where the items in a list are ordered to maximize some reward has many applications such as web advertisement placement, search, and control libraries in robotics. Previous work in sequence optimization produces a static orderi