ترغب بنشر مسار تعليمي؟ اضغط هنا

Amplitude of solar gravity modes generated by penetrative plumes

124   0   0.0 ( 0 )
 نشر من قبل Charly Pin\\c{c}on
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of gravity modes is expected to give us unprecedented insights into the inner dynamics of the Sun. Within this framework, predicting their amplitudes is essential to guide future observational strategies and seismic studies. In this work, we predict the amplitude of low-frequency asymptotic gravity modes generated by penetrative convection at the top of the radiative zone. The result is found to depend critically on the time evolution of the plumes inside the generation region. Using a solar model, we compute the GOLF apparent surface radial velocity of low-degree gravity modes in the frequency range $10~mu H_zle u le 100~mu H_z$. In case of a Gaussian plume time evolution, gravity modes turn out to be undetectable because of too small surface amplitudes. This holds true despite a wide range of values considered for the parameters of the model. In the other limiting case of an exponential time evolution, plumes are expected to drive gravity modes in a much more efficient way because of a much higher temporal coupling between the plumes and the modes than in the Gaussian case. Using reasonable values for the plume parameters based on semi-analytical models, the apparent surface velocities in this case turn out to be one order of magnitude smaller than the 22-years GOLF detection threshold and than the previous estimates considering turbulent pressure as the driving mechanism, with a maximum value of $0.05$ cm s${}^{-1}$ for $ell =1$ and $ uapprox 100~mu H_z$. When accounting for uncertainties on the plume parameters, the apparent surface velocities in the most favorable plausible case become comparable to those predicted with turbulent pressure, and the GOLF observation time required for a detection at $ u approx100~mu H_z$ and $ell=1$ is reduced to about 50 yrs.



قيم البحث

اقرأ أيضاً

Solar coronal plumes long seemed to possess a simple geometry supporting spatially coherent, stable outflow without significant fine structure. Recent high-resolution observations have challenged this picture by revealing numerous transient, small-sc ale, collimated outflows (jetlets) at the base of plumes. The dynamic filamentary structure of solar plumes above these outflows, and its relationship with the overall plume structure, have remained largely unexplored. We analyzed the statistics of continuously observed fine structure inside a single representative bright plume within a mid-latitude coronal hole during 2016 July 2-3. By applying advanced edge-enhancement and spatiotemporal analysis techniques to extended series of high-resolution images from the Solar Dynamics Observatorys Atmospheric Imaging Assembly, we determined that the plume was composed of numerous time-evolving filamentary substructures, referred to as plumelets in this paper, that accounted for most of the plume emission. The number of simultaneously identifiable plumelets was positively correlated with plume brightness, peaked in the fully formed plume, and remained saturated thereafter. The plumelets had transverse widths of 10 Mm and intermittently supported upwardly propagating periodic disturbances with phase speeds of 190-260 km/s and longitudinal wavelengths of 55-65 Mm. The characteristic frequency (3.5 mHz) is commensurate with that of solar p-modes. Oscillations in neighboring plumelets are uncorrelated, indicating that the waves could be driven by p-mode flows at spatial scales smaller than the plumelet separation. Multiple independent sources of outflow within a single coronal plume should impart significant fine structure to the solar wind that may be detectable by Parker Solar Probe and Solar Orbiter.
Within the Babcock-Leighton framework for the solar dynamo, the strength of a cycle is expected to depend on the strength of the dipole moment or net hemispheric flux during the preceding minimum, which depends on how much flux was present in each he misphere at the start of the previous cycle and how much net magnetic flux was transported across the equator during the cycle. Some of this transport is associated with the random walk of magnetic flux tubes subject to granular and supergranular buffeting, some of it is due to the advection caused by systematic cross-equatorial flows such as those associated with the inflows into active regions, and some crosses the equator during the emergence process. We aim to determine how much of the cross-equatorial transport is due to small-scale disorganized motions (treated as diffusion) compared with other processes such as emergence flux across the equator. We measure the cross-equatorial flux transport using Kitt Peak synoptic magnetograms, estimating both the total and diffusive fluxes. Occasionally a large sunspot group, with a large tilt angle emerges crossing the equator, with flux from the two polarities in opposite hemispheres. The largest of these events carry a substantial amount of flux across the equator (compared to the magnetic flux near the poles). We call such events cross-equatorial flux plumes. There are very few such large events during a cycle, which introduces an uncertainty into the determination of the amount of magnetic flux transported across the equator in any particular cycle. As the amount of flux which crosses the equator determines the amount of net flux in each hemisphere, it follows that the cross-equatorial plumes introduce an uncertainty in the prediction of the net flux in each hemisphere. This leads to an uncertainty in predictions of the strength of the following cycle.
Gravity modes are the best probes to study the solar radiative zone dynamics, especially in the nuclear core. These modes remain difficult to observe, but they are essential ingredients for progressing on the evolution of the Sun-Earth relationship a t the level of centuries. Today, the knowledge of the internal dynamics comes from acoustic modes and concerns mainly the external 2% of the solar mass. Nevertheless, the flat rotation profile of the radiative zone compels physics beyond the standard framework. I summarize different attempts to look for gravity modes and the results obtained after 8 years of observation with the GOLF/SoHO instrument. Some gravity mode candidates (at 1mm/s level) have appeared with more than 98% confidence level as quadruplets or quintuplets. These patterns, if confirmed as gravity modes, may reveal very exciting physics of the solar core. Getting information on rotation and magnetic field in the solar core are real keys to simulate a complete dynamical solar picture. The understanding of the solar dynamics, the precise energetic balance and its temporal evolution necessitate more observations of the radiative zone which constitutes 98% of the Sun by mass. Our expertise in Doppler velocity measurements allows a step further and a new instrumental concept to reach velocities as low as 0.1 mm/s. A prototype will join the Tenerife site in 2006 and a space version is proposed to CNES and ESA as a microsatellite or part of a payload at the L1 Lagrange point.
William Cranch Bond, director of the Harvard College Observatory in mid-19th century, carried out detailed sunspot observations during the period 1847-1849. We highlight Bond was the observer with the highest daily number of sunspot groups observed i n Solar Cycle 9 recording 18 groups on 26 December 1848 according to the current sunspot group database. However, we have detected significant mistakes in these counts due to the use of sunspot position tables instead of solar drawings. Therefore, we have revisited the sunspot observations made by Bond, establishing a new group counting. Our new counts of the sunspot groups from Bonds drawings indicate that solar activity was previously overestimated. Moreover, after this new counting, Bond would not be the astronomer who recorded the highest daily group number for Solar Cycle 9 but Schmidt with 16 groups on 14 February 1849. We have also indicated the new highest annual group numbers recorded by any observer for the period 1847-1849 in order to correct those values applied in the brightest star method, which is used as a rough indicator of the solar activity level. Furthermore, a comparison between Bonds sunspot records and the sunspot observations made by Schwabe and Wolf is shown. We conclude that the statistics of Wolf and Bond are similar regarding to the group count. Additionally, Schwabe was able to observe smaller groups than Bond.
Coronal plumes are bright magnetic funnels found in quiet regions (QRs) and coronal holes (CHs). They extend high into the solar corona and last from hours to days. The heating processes of plumes involve dynamics of the magnetic field at their base, but the processes themselves remain mysterious. Recent observations suggest that plume heating is a consequence of magnetic flux cancellation and/or convergence at the plume base. These studies suggest that the base flux in plumes is of mixed polarity, either obvious or hidden in SDO HMI data, but do not quantify it. To investigate the magnetic origins of plume heating, we select ten unipolar network flux concentrations, four in CHs, four in QRs, and two that do not form a plume, and track plume luminosity in SDO AIA 171 A images along with the base flux in SDO HMI magnetograms, over each flux concentrations lifetime. We find that plume heating is triggered when convergence of the base flux surpasses a field strength of 200 to 600 G. The luminosity of both QR and CH plumes respond similarly to the field in the plume base, suggesting that the two have a common formation mechanism. Our examples of non-plume-forming flux concentrations, reaching field strengths of 200 G for a similar number of pixels as for a couple of our plumes, suggest that a critical field might be necessary to form a plume but is not sufficient for it, thus, advocating for other mechanisms, e.g. flux cancellation due to hidden opposite-polarity field, at play.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا