ترغب بنشر مسار تعليمي؟ اضغط هنا

Breathing solitons induced by collision in dipolar Bose-Einstein condensates

87   0   0.0 ( 0 )
 نشر من قبل Peng Gao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We numerically study the breathing dynamics induced by collision between bright solitons in the one-dimensional Bose-Einstein condensates with strong dipole-dipole interaction. This breathing phenomenon is closely related to the after-collision short-lived attraction of solitons induced by the dipolar effect. The initial phase difference of solitons leads to the asymmetric dynamics after collision, which is manifested on their different breathing amplitude, breathing frequency, and atom number. We clarify that the asymmetry of breathing frequency is directly induced by the asymmetric atom number, rather than initial phase difference. Moreover, the collision between breathing solitons can produce new after-two-collision breathing solitons, whose breathing amplitude can be adjusted and reach the maximum (or minimum) when the peak-peak (or dip-dip) collision happens.



قيم البحث

اقرأ أيضاً

Quasiparticle approach to dynamics of dark solitons is applied to the case of ring solitons. It is shown that the energy conservation law provides the effective equations of motion of ring dark solitons for general form of the nonlinear term in the g eneralized nonlinear Schroedinger or Gross-Pitaevskii equation. Analytical theory is illustrated by examples of dynamics of ring solitons in light beams propagating through a photorefractive medium and in non-uniform condensates confined in axially symmetric traps. Analytical results agree very well with the results of our numerical simulations.
The possibility of effectively inverting the sign of the dipole-dipole interaction, by fast rotation of the dipole polarization, is examined within a harmonically trapped dipolar Bose-Einstein condensate. Our analysis is based on the stationary state s in the Thomas-Fermi limit, in the corotating frame, as well as direct numerical simulations in the Thomas-Fermi regime, explicitly accounting for the rotating polarization. The condensate is found to be inherently unstable due to the dynamical instability of collective modes. This ultimately prevents the realization of robust and long-lived rotationally tuned states. Our findings have major implications for experimentally accessing this regime.
We consider the stability and dynamics of multiple dark solitons in cigar-shaped Bose-Einstein condensates (BECs). Our study is motivated by the fact that multiple matter-wave dark solitons may naturally form in such settings as per our recent work [ Phys. Rev. Lett. 101, 130401 (2008)]. First, we study the dark soliton interactions and show that the dynamics of well-separated solitons (i.e., ones that undergo a collision with relatively low velocities) can be analyzed by means of particle-like equations of motion. The latter take into regard the repulsion between solitons (via an effective repulsive potential) and the confinement and dimensionality of the system (via an effective parabolic trap for each soliton). Next, based on the fact that stationary, well-separated dark multi-soliton states emerge as a nonlinear continuation of the appropriate excited eigensates of the quantum harmonic oscillator, we use a Bogoliubov-de Gennes analysis to systematically study the stability of such structures. We find that for a sufficiently large number of atoms, multiple soliton states may be dynamically stable, while for a small number of atoms, we predict a dynamical instability emerging from resonance effects between the eigenfrequencies of the soliton modes and the intrinsic excitation frequencies of the condensate. Finally we present experimental realizations of multi-soliton states including a three-soliton state consisting of two solitons oscillating around a stationary one.
We investigate dipolar Bose-Einstein condensates in a complex external double-well potential that features a combined parity and time-reversal symmetry. On the basis of the Gross-Pitaevskii equation we study the effects of the long-ranged anisotropic dipole-dipole interaction on ground and excited states by the use of a time-dependent variational approach. We show that the property of a similar non-dipolar condensate to possess real energy eigenvalues in certain parameter ranges is preserved despite the inclusion of this nonlinear interaction. Furthermore, we present states that break the PT symmetry and investigate the stability of the distinct stationary solutions. In our dynamical simulations we reveal a complex stabilization mechanism for PT-symmetric, as well as for PT-broken states which are, in principle, unstable with respect to small perturbations.
Since the realization of Bose-Einstein condensates (BECs) in optical potentials, intensive experimental and theoretical investigations have been carried out for matter-wave solitons, coherent structures, modulational instability (MI), and nonlinear e xcitation of BEC matter waves, making them objects of fundamental interest in the vast realm of nonlinear physics and soft condensed-matter physics. Ubiquitous models, which are relevant to the description of diverse nonlinear media are provided by the nonlinear Schrodinger (NLS), alias Gross-Pitaevskii (GP) equations. In many settings, nontrivial solitons and coherent structures, which do not exist or are unstable in free space, can be created or stabilized by means of various management techniques, which are represented by NLS and GP equations with spatiotemporal coefficients in front of linear or nonlinear terms. Developing this direction of research in various settings, efficient schemes of the spatiotemporal modulation of coefficients in the NLS/GP equations have been designed to engineer desirable robust nonlinear modes. This direction and related ones are the main topic of the present review. A broad and important theme is the creation and control of 1D solitons in BEC by means of combination of the temporal or spatial modulation of the nonlinearity strength and a time-varying trapping potential. An essential ramification of this topic is analytical and numerical analysis of MI of continuous-wave states, and control of the nonlinear development of MI. In addition to that, the review also includes some topics that do not directly include spatiotemporal modulation but address physically important phenomena which demonstrate similar soliton dynamics. These are soliton motion in binary BEC, three-component solitons in spinor BEC, and dynamics of two-component solitons under the action of spin-orbit coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا