ترغب بنشر مسار تعليمي؟ اضغط هنا

Low half-wave-voltage, ultra-high bandwidth thin-film LiNbO3 modulator based on hybrid waveguide and periodic capacitively loaded electrodes

68   0   0.0 ( 0 )
 نشر من قبل Xuecheng Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel thin-film LiNbO3 (TFLN) electro-optic modulator is proposed and demonstrated. LiNbO3-silica hybrid waveguide is adopted to maintain low optical loss for an electrode spacing as narrow as 3 {mu}m, resulting in a record low half-wave-voltage length product of only 1.7 V*cm. Capacitively loaded traveling-wave electrodes (CL-TWEs) are employed to reduce the microwave loss, while quartz substrate is used in place of silicon substrate to achieve velocity matching. The fabricated TFLN modulator with a 5-mm-long modulation region exhibits a half-wave-voltage of 3.4 V and merely 1.3 dB roll-off in electro-optic response up to 67 GHz, and a 3-dB modulation bandwidth over 110 GHz is predicted.

قيم البحث

اقرأ أيضاً

Electro-optic phase modulators are critical components in modern communication, microwave photonic, and quantum photonic systems. Important for these applications is to achieve modulators with low half-wave voltage at high frequencies. Here we demons trate an integrated phase modulator, based on a thin-film lithium niobate platform, that simultaneously features small on-chip loss (~ 1 dB) and low half-wave voltage over a large spectral range (3.5 - 4.5 V at 5 - 40 GHz). By driving the modulator with a strong 30-GHz microwave signal corresponding to around four half-wave voltages, we generate an optical frequency comb consisting of over 40 sidebands spanning 10 nm in the telecom L-band. The high electro-optic performance combined with the high RF power-handling ability (3.1 W) of our integrated phase modulator are crucial for future photonics and microwave systems.
Electro-optic modulators with low voltage and large bandwidth are crucial for both analog and digital communications. Recently, thin-film lithium niobate modulators have enable dramatic performance improvements by reducing the required modulation vol tage while maintaining high bandwidths. However, the reduced electrode gaps in such modulators leads to significantly higher microwave losses, which limit electro-optic performance at high frequencies. Here we overcome this limitation and achieve a record combination of low RF half-wave voltage of 1.3 V while maintaining electro-optic response with 1.8-dB roll-off at 50 GHz. This demonstration represents a significant improvement in voltage-bandwidth limit, one that is comparable to that achieved when switching from legacy bulk to thin-film lithium niobate modulators. Leveraging the low-loss electrode geometry, we show that sub-volt modulators with $>$ 100 GHz bandwidth can be enabled.
Phase-change materials (PCMs) have emerged as promising active elements in silicon (Si) photonic systems. In this work, we design, fabricate, and characterize a hybrid Si-PCM optical modulator. By integrating vanadium dioxide (a PCM) within a Si phot onic waveguide, in a non-resonant geometry, we demonstrate ~ 10 dB broadband modulation with a PCM length of 500 nm.
Electrodes in close proximity to an active area of a device are required for sufficient electrical control. The integration of such electrodes into optical devices can be challenging since low optical losses must be retained to realise high quality o peration. Here, we demonstrate that it is possible to place a metallic shallow phosphorus doped layer in a silicon micro-ring cavity that can function at cryogenic temperatures. We verify that the shallow doping layer affects the local refractive index while inducing minimal losses with quality factors up to 10$^5$. This demonstration opens up a pathway to the integration of an electronic device, such as a single-electron transistor, into an optical circuit on the same material platform.
A fast silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 {mu}m is proposed and realized by introducing an ultra-thin wide silicon-on-insulator ridge core region with a narrow metal cap. With this novel design, the light absorptio n in graphene is enhanced while the metal absorption loss is reduced simultaneously, which helps greatly improve the responsivity as well as shorten the absorption region for achieving fast responses. Furthermore, metal-graphene-metal sandwiched electrodes are introduced to reduce the metal-graphene contact resistance, which is also helpful for improving the response speed. When the photodetector operates at 2 {mu}m, the measured 3dB-bandwidth is >20 GHz (which is limited by the experimental setup) while the 3dB-bandwith calculated from the equivalent circuit with the parameters extracted from the measured S11 is as high as ~100 GHz. To the best of our knowledge, it is the first time to report the waveguide photodetector at 2 {mu}m with a 3dB-bandwidth over 20 GHz. Besides, the present photodetectors also work very well at 1.55 {mu}m. The measured responsivity is about 0.4 A/W under a bias voltage of -0.3 V for an optical power of 0.16 mW, while the measured 3dB-bandwidth is over 40 GHz (limited by the test setup) and the 3 dB-bandwidth estimated from the equivalent circuit is also as high as ~100 GHz, which is one of the best results reported for silicon-graphene photodetectors at 1.55 {mu}m.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا