ترغب بنشر مسار تعليمي؟ اضغط هنا

Silicon waveguide modulator with embedded phase change material

104   0   0.0 ( 0 )
 نشر من قبل Kevin Miller
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phase-change materials (PCMs) have emerged as promising active elements in silicon (Si) photonic systems. In this work, we design, fabricate, and characterize a hybrid Si-PCM optical modulator. By integrating vanadium dioxide (a PCM) within a Si photonic waveguide, in a non-resonant geometry, we demonstrate ~ 10 dB broadband modulation with a PCM length of 500 nm.

قيم البحث

اقرأ أيضاً

For many applications, a method for controlling the optical properties of a solid-state film over a broad wavelength range is highly desirable and could have significant commercial impact. One such application is smart glazing technology where it is necessary to harvest near-infrared solar radiation in the winter and reflect it in the summer--an impossibility for materials with fixed thermal and optical properties. Here, we experimentally demonstrate a smart window which uses a thin-film coating containing GeTe, a bi-stable, chalcogenide-based phase-change material which can modulate near-infrared absorption while maintaining neutral-colouration and constant transmission of light at visible wavelengths. We additionally demonstrate controlled down-conversion of absorbed near-infrared energy to far-infrared radiation which can be used to heat a buildings interior and show that these thin-films also serve as low-emissivity coatings, reducing heat transfer between a building and its external environment throughout the year. Finally, we demonstrate fast, sub-millisecond switching using transparent electrical heaters integrated on glass substrates. These combined properties result in a smart window that is efficient, affordable, and aesthetically pleasing--three aspects which are crucial for successful adoption of green technology.
Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability, and functionality compared to their traditional bulk counterparts. Optical phase change materials (O-PCMs) offer an appealing mate rial solution for active metasurface devices with their large index contrast and nonvolatile switching characteristics. Here we report what we believe to be the first electrically reconfigurable nonvolatile metasurfaces based on O-PCMs. The O-PCM alloy used in the devices, Ge2Sb2Se4Te1 (GSST), uniquely combines giant non-volatile index modulation capability, broadband low optical loss, and a large reversible switching volume, enabling significantly enhanced light-matter interactions within the active O-PCM medium. Capitalizing on these favorable attributes, we demonstrated continuously tunable active metasurfaces with record half-octave spectral tuning range and large optical contrast of over 400%. We further prototyped a polarization-insensitive phase-gradient metasurface to realize dynamic optical beam steering.
We demonstrated a silicon integrated microring modulator working at the 2-um waveband with an L-shaped PN junction. 15-GHz 3-dB electro-optic bandwidth and <1 Vcm modulation efficiency for 45-Gbps NRZ-OOK signaling is achieved at 1960 nm.
Electro-optic signal modulation provides a key functionality in modern technology and information networks. Photonic integration has enabled not only miniaturizing photonic components, but also provided performance improvements due to co-design addre ssing both electrical and optical device rules. However the millimeter-to-centimeter large footprint of many foundry-ready photonic electro-optic modulators significantly limits scaling density. Furthermore, modulators bear a fundamental a frequency-response to energy-sensitive trade-off, a limitation that can be overcome with coupling-based modulators where the temporal response speed is decoupled from the optical cavity photo lifetime. Thus, the coupling effect to the resonator is modulated rather then tuning the index of the resonator itself. However, the weak electro-optic response of silicon limits such coupling modulator performance, since the micrometer-short overlap region of the waveguide-bus and a microring resonator is insufficient to induce signal modulation. To address these limitations, here we demonstrate a coupling-controlled electro-optic modulator by heterogeneously integrating a dual-gated indium-tin-oxide (ITO) phase shifter placed at the silicon microring-bus coupler region. Our experimental modulator shows about 4 dB extinction ratio on resonance, and a about 1.5 dB off resonance with a low insertion loss of 0.15 dB for a just 4 {mu}m short device demonstrating a compact high 10:1 modulation-to-loss ratio. In conclusion we demonstrate a coupling modulator using strongly index-changeable materials enabling compact and high-performing modulators using semiconductor foundry-near materials.
Electro-optic modulators transform electronic signals into the optical domain and are critical components in modern telecommunication networks, RF photonics, and emerging applications in quantum photonics and beam steering. All these applications req uire integrated and voltage-efficient modulator solutions with compact formfactors that are seamlessly integratable with Silicon photonics platforms and feature near-CMOS material processing synergies. However, existing integrated modulators are challenged to meet these requirements. Conversely, emerging electro-optic materials heterogeneously integrated with Si photonics open a new avenue for device engineering. Indium tin oxide (ITO) is one such compelling material for heterogeneous integration in Si exhibiting formidable electro-optic effect characterized by unity order index at telecommunication frequencies. Here we overcome these limitations and demonstrate a monolithically integrated ITO electro- optic modulator based on a Mach Zehnder interferometer (MZI) featuring a high-performance half-wave voltage and active device length product, VpL = 0.52 V-mm. We show, how that the unity-strong index change enables a 30 micrometer-short pi-phase shifter operating ITO in the index-dominated region away from the epsilon-bear-zero ENZ point. This device experimentally confirms electrical phase shifting in ITO enabling its use in multifaceted applications including dense on-chip communication networks, nonlinearity for activation functions in photonic neural networks, and phased array applications for LiDAR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا