ﻻ يوجد ملخص باللغة العربية
Disentanglement is defined as the problem of learninga representation that can separate the distinct, informativefactors of variations of data. Learning such a representa-tion may be critical for developing explainable and human-controllable Deep Generative Models (DGMs) in artificialintelligence. However, disentanglement in GANs is not a triv-ial task, as the absence of sample likelihood and posteriorinference for latent variables seems to prohibit the forwardstep. Inspired by contrastive learning (CL), this paper, froma new perspective, proposes contrastive disentanglement ingenerative adversarial networks (CD-GAN). It aims at dis-entangling the factors of inter-class variation of visual datathrough contrasting image features, since the same factorvalues produce images in the same class. More importantly,we probe a novel way to make use of limited amount ofsupervision to the largest extent, to promote inter-class dis-entanglement performance. Extensive experimental resultson many well-known datasets demonstrate the efficacy ofCD-GAN for disentangling inter-class variation.
Disentangled generative models are typically trained with an extra regularization term, which encourages the traversal of each latent factor to make a distinct and independent change at the cost of generation quality. When traversing the latent space
Generative Adversarial Networks (GANs) are able to generate high-quality images, but it remains difficult to explicitly specify the semantics of synthesized images. In this work, we aim to better understand the semantic representation of GANs, and th
In this paper, we propose a new continuously learning generative model, called the Lifelong Twin Generative Adversarial Networks (LT-GANs). LT-GANs learns a sequence of tasks from several databases and its architecture consists of three components: t
We propose MAD-GAN, an intuitive generalization to the Generative Adversarial Networks (GANs) and its conditional variants to address the well known problem of mode collapse. First, MAD-GAN is a multi-agent GAN architecture incorporating multiple gen
Detecting abnormal activities in real-world surveillance videos is an important yet challenging task as the prior knowledge about video anomalies is usually limited or unavailable. Despite that many approaches have been developed to resolve this prob