ﻻ يوجد ملخص باللغة العربية
We present high angular resolution imaging of the quasar PSO J172.3556+18.7734 at $z=6.82$ with the Very Long Baseline Array (VLBA). This source currently holds the record of being the highest redshift radio-loud quasar. These observations reveal a dominant radio source with a flux density of $398.4 pm 61.4~mu$Jy at 1.53 GHz, a deconvolved size of $9.9 times 3.5$ mas ($52.5 times 18.6$ pc), and an intrinsic brightness temperature of ($4.7 pm 0.7) times 10^7$ K. A weak unresolved radio extension from the main source is also detected at $sim~3.1sigma$ level. The total flux density recovered with the VLBA at 1.53 GHz is consistent with that measured with the Very Large Array (VLA) at a similar frequency. The quasar is not detected at 4.67 GHz with the VLBA, suggesting a steep spectral index with a limit of $alpha^{1.53}_{4.67} < -$1.55. The quasar is also not detected with the VLBA at 7.67 GHz. The overall characteristics of the quasar suggest that it is a very young radio source similar to lower redshift Gigahertz Peaked Spectrum radio sources, with an estimated kinematic age of $sim~10^3$ years. The VLA observations of this quasar revealed a second radio source in the field $23rlap{.}{}1$ away. This radio source, which does not have an optical or IR counterpart, is not detected with the VLBA at any of the observed frequencies. Its non-detection at the lowest observed VLBA frequency suggests that it is resolved out, implying a size larger than ~$0rlap{.}{}17$. It is thus likely situated at lower redshift than the quasar.
We present high angular resolution imaging ($23.9 times 11.3$ mas, $138.6 times 65.5$ pc) of the radio-loud quasar PSO~J352.4034$-$15.3373 at $z=5.84$ with the Very Long Baseline Array (VLBA) at 1.54 GHz. This quasar has the highest radio-to-optical
Radio sources at the highest redshifts can provide unique information on the first massive galaxies and black holes, the densest primordial environments, and the epoch of reionization. The number of astronomical objects identified at z>6 has increase
We have used the SINFONI near-infrared integral field unit on the VLT to resolve the optical emission line structure of one of the brightest (L~1e44 erg/s) and nearest (z=2.38) of all Lya blobs (LABs). The target, known in the literature as object B1
The interactions between radio jets and the interstellar medium play a defining role for the co-evolution of central supermassive black holes and their host galaxies, but observational constraints on these feedback processes are still very limited at
We carry out a series of deep Karl G. Jansky Very Large Array (VLA) S-band observations of a sample of 21 quasars at $zsim6$. The new observations expand the searches of radio continuum emission to the optically faint quasar population at the highest