ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolving the Powerful Radio-loud Quasar at z~6

67   0   0.0 ( 0 )
 نشر من قبل Emmanuel Momjian
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high angular resolution imaging ($23.9 times 11.3$ mas, $138.6 times 65.5$ pc) of the radio-loud quasar PSO~J352.4034$-$15.3373 at $z=5.84$ with the Very Long Baseline Array (VLBA) at 1.54 GHz. This quasar has the highest radio-to-optical flux density ratio at such a redshift, making it the radio-loudest source known to date at $z sim 6$. The VLBA observations presented here resolve this quasar into multiple components with an overall linear extent of 1.62 kpc ($0rlap{.}{}28$) and with a total flux density of $6.57 pm 0.38$ mJy, which is about half of the emission measured at a much lower angular resolution. The morphology of the source is comparable with either a radio core with a one-sided jet, or a compact or a medium-size Symmetric Object (CSO/MSO). If the source is a CSO/MSO, and assuming an advance speed of $0.2c$, then the estimated kinematic age is $sim 10^4$ yr.



قيم البحث

اقرأ أيضاً

We carry out a series of deep Karl G. Jansky Very Large Array (VLA) S-band observations of a sample of 21 quasars at $zsim6$. The new observations expand the searches of radio continuum emission to the optically faint quasar population at the highest redshift with rest-frame $4400 rm AA$ luminosities down to $3 times10^{11} L_{odot}$. We report the detections of two new radio-loud quasars: CFHQS J2242+0334 (hereafter J2242+0334) at $z=5.88$ and CFHQS J0227$-$0605 (hereafter J0227$-$0605) at $z=6.20$, detected with 3 GHz flux densities of $87.0 pm 6.3 mu rm Jy$ and $55.4 pm 6.7 mu rm Jy$, respectively. Their radio replaced{loudness}{loudnesses} are estimated to be $54.9 pm 4.7$ and $16.5 pm 3.2$, respectively. To better constrain the radio-loud fraction (RLF), we combine the new measurements with the archival VLA L-band data as well as available data from the literature, considering the upper limits for non-detections and deleted{and} possible selection effects. The final derived RLF is $9.4 pm 5.7%$ for the optically selected quasars at $zsim6$. We also compare the RLF to that of the quasar samples at low redshift and check the RLF in different quasar luminosity bins. The RLF for the optically faint objects is still poorly constrained due to the limited sample size. Our replaced{result}{results} show no evidence of significant quasar RLF evolution with redshift. There is also no clear trend of RLF evolution with quasar UV/optical luminosity due to the limited sample size of optically faint objects with deep radio observations.
The interactions between radio jets and the interstellar medium play a defining role for the co-evolution of central supermassive black holes and their host galaxies, but observational constraints on these feedback processes are still very limited at redshifts $z > 2$. We investigate the radio-loud quasar PSO J352.4034-15.3373 at $z sim 6$ at the edge of the Epoch of Reionization. This quasar is among the most powerful radio emitters and the first one with direct evidence of extended radio jets ($sim$1.6 kpc) at these high redshifts. We analyze NOEMA and ALMA millimeter data targeting the CO (6-5) and [CII] far-infrared emission lines, respectively, and the underlying continuum. The broad $440pm 80$ km s$^{-1}$ and marginally resolved [CII] emission line yields a systemic redshift of $z!=!5.832 pm 0.001$. Additionally, we report a strong 215 MHz radio continuum detection, $88pm 7$ mJy, using the GMRT. This measurement significantly improves the constraints at the low-frequency end of the spectral energy distribution of this quasar. In contrast to what is typically observed in high-redshift radio-quiet quasars, we show that cold dust emission alone cannot reproduce the millimeter continuum measurements. This is evidence that the strong synchrotron emission from the quasar contributes substantially to the emission even at millimeter (far-infrared in the rest-frame) wavelengths. This quasar is an ideal system to probe the effects of radio jets during the formation of a massive galaxy within the first Gyr of the Universe.
We present high angular resolution imaging of the quasar PSO J172.3556+18.7734 at $z=6.82$ with the Very Long Baseline Array (VLBA). This source currently holds the record of being the highest redshift radio-loud quasar. These observations reveal a d ominant radio source with a flux density of $398.4 pm 61.4~mu$Jy at 1.53 GHz, a deconvolved size of $9.9 times 3.5$ mas ($52.5 times 18.6$ pc), and an intrinsic brightness temperature of ($4.7 pm 0.7) times 10^7$ K. A weak unresolved radio extension from the main source is also detected at $sim~3.1sigma$ level. The total flux density recovered with the VLBA at 1.53 GHz is consistent with that measured with the Very Large Array (VLA) at a similar frequency. The quasar is not detected at 4.67 GHz with the VLBA, suggesting a steep spectral index with a limit of $alpha^{1.53}_{4.67} < -$1.55. The quasar is also not detected with the VLBA at 7.67 GHz. The overall characteristics of the quasar suggest that it is a very young radio source similar to lower redshift Gigahertz Peaked Spectrum radio sources, with an estimated kinematic age of $sim~10^3$ years. The VLA observations of this quasar revealed a second radio source in the field $23rlap{.}{}1$ away. This radio source, which does not have an optical or IR counterpart, is not detected with the VLBA at any of the observed frequencies. Its non-detection at the lowest observed VLBA frequency suggests that it is resolved out, implying a size larger than ~$0rlap{.}{}17$. It is thus likely situated at lower redshift than the quasar.
X-ray cluster emission has been observed mainly in clusters with inactive cD galaxies (L_bol ~1E40-1E43erg/sec), which do not show signs of accretion onto a SMBH. Our recent Chandra discovery of ~100kpc scale diffuse X-ray emission revealed the prese nce of an X-ray cluster associated with the radio loud quasar 3C186 at redshift z=1.1 and suggests interactions between the quasar and the cluster. In contrast to the majority of X-ray clusters the 3C186 cluster contains a quasar in the center whose radiative power alone exceeds that which would be needed to quench the cluster cooling. We present the Chandra X-ray data and new deep radio and optical images of this cluster. The 3C186 quasar is a powerful Compact Steep Spectrum radio source expanding into the cluster medium. The 2arcsec radio jet is unresolved in the Chandra observation, but its direction is orthogonal to the elliptical surface brightness of the cluster. The radio data show the possible presence of old radio lobes on 10 arcsec scale in the direction of the radio jet. We discuss the nature of this source in the context of intermittent radio activity and the interaction of the young expanding radio source with the cluster medium.
We report the 888 MHz radio detection in the Rapid ASKAP Continuum Survey (RACS) of VIK J2318$-$3113, a $z$=6.44 quasar. Its radio luminosity (1.2 $times 10^{26}$ W Hz$^{-1}$ at 5 GHz) compared to the optical luminosity (1.8 $times 10^{24}$ W Hz$^{-1 }$ at 4400 A) makes it the most distant radio-loud quasar observed so far, with a radio loudness R$sim$70 (R$=L_mathrm{{5GHz}}/L_mathrm{{4400A}}$). Moreover, the high bolometric luminosity of the source (L$_mathrm{{bol}}$=7.4 $times 10^{46}$ erg s$^{-1}$) suggests the presence of a supermassive black hole with a high mass ($gtrsim$6 $times$10$^8$ M$_odot$) at a time when the Universe was younger than a billion years. Combining the new radio data from RACS with previous ASKAP observations at the same frequency, we found that the flux density of the source may have varied by a factor of $sim$2, which could suggest the presence of a relativistic jet oriented towards the line of sight, that is, a blazar nature. However, currently available radio data do not allow us to firmly characterise the orientation of the source. Further radio and X-ray observations are needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا