ﻻ يوجد ملخص باللغة العربية
A novel regime of self-compression is proposed for plasma-based backward Raman amplification(BRA) upon flying focus. By using a pumping focus moving with a speed equal to the group velocity of stimulated Raman backscattering(SRBS), only a short part of SRBS which does always synchronize with the flying focus can be amplified. Due to the asymmetrical amplification, the pulse can be directly compressed in the linear stage of BRA. Therefore, instead of a short pulse, the Raman spontaneous or a long pulse can seed the BRA amplifiers. The regime is supported by the 2D particle-in-cell(PIC) simulation without a seed, presenting that the pump pulse is compressed from 26ps to 116fs, with an output amplitude comparable with the case of a well-synchronized short seed. This method provides a significant way to simplify the Raman amplifiers and overcome the issue of synchronization jitter between the pump and the seed.
We study theoretically the exchange of angular momentum between electromagnetic and electrostatic waves in a plasma, due to the stimulated Raman and Brillouin backscattering processes. Angular momentum states for plasmon and phonon fields are introdu
A high-intensity laser pulse propagating through a medium triggers an ionization front that can accelerate and frequency-upshift the photons of a second pulse. The maximum upshift is ultimately limited by the accelerated photons outpacing the ionizat
Stimulated Brillouin backscattering of light is shown to be drastically enhanced in electron-positron plasmas, in contrast to the suppression of stimulated Raman scattering. A generalized theory of three-wave coupling between electromagnetic and plas
We propose a new method for self-injection of high-quality electron bunches in the plasma wakefield structure in the blowout regime utilizing a flying focus produced by a drive-beam with an energy-chirp. In a flying focus the speed of the density cen
An investigation of the possible inflation of stimulated Brillouin backscattering (SBS) due to ion kinetic effects is presented using electromagnetic particle simulations and integrations of three-wave coupled-mode equations with linear and nonlinear