ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-compression of stimulated Raman backscattering by flying focus

85   0   0.0 ( 0 )
 نشر من قبل Zhaohui Wu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel regime of self-compression is proposed for plasma-based backward Raman amplification(BRA) upon flying focus. By using a pumping focus moving with a speed equal to the group velocity of stimulated Raman backscattering(SRBS), only a short part of SRBS which does always synchronize with the flying focus can be amplified. Due to the asymmetrical amplification, the pulse can be directly compressed in the linear stage of BRA. Therefore, instead of a short pulse, the Raman spontaneous or a long pulse can seed the BRA amplifiers. The regime is supported by the 2D particle-in-cell(PIC) simulation without a seed, presenting that the pump pulse is compressed from 26ps to 116fs, with an output amplitude comparable with the case of a well-synchronized short seed. This method provides a significant way to simplify the Raman amplifiers and overcome the issue of synchronization jitter between the pump and the seed.



قيم البحث

اقرأ أيضاً

237 - J.T. Mendonc{c}a , B. Thide , 2009
We study theoretically the exchange of angular momentum between electromagnetic and electrostatic waves in a plasma, due to the stimulated Raman and Brillouin backscattering processes. Angular momentum states for plasmon and phonon fields are introdu ced for the first time. We demonstrate that these states can be excited by nonlinear wave mixing, associated with the scattering processes. This could be relevant for plasma diagnostics, both in laboratory and in space. Nonlinearly coupled paraxial equations and instability growth rates are derived.
A high-intensity laser pulse propagating through a medium triggers an ionization front that can accelerate and frequency-upshift the photons of a second pulse. The maximum upshift is ultimately limited by the accelerated photons outpacing the ionizat ion front or the ionizing pulse refracting from the plasma. Here we apply the flying focus--a moving focal point resulting from a chirped laser pulse focused by a chromatic lens--to overcome these limitations. Theory and simulations demonstrate that the ionization front produced by a flying focus can frequency-upshift an ultrashort optical pulse to the extreme ultraviolet over a centimeter of propagation. An analytic model of the upshift predicts that this scheme could be scaled to a novel table-top source of spatially coherent x-rays.
Stimulated Brillouin backscattering of light is shown to be drastically enhanced in electron-positron plasmas, in contrast to the suppression of stimulated Raman scattering. A generalized theory of three-wave coupling between electromagnetic and plas ma waves in two-species plasmas with arbitrary mass ratios, confirmed with a comprehensive set of particle-in-cell simulations, reveals violations of commonly-held assumptions about the behavior of electron-positron plasmas. Specifically, in the electron-positron limit three-wave parametric interaction between light and the plasma acoustic wave can occur, and the acoustic wave phase velocity differs from its usually assumed value.
We propose a new method for self-injection of high-quality electron bunches in the plasma wakefield structure in the blowout regime utilizing a flying focus produced by a drive-beam with an energy-chirp. In a flying focus the speed of the density cen troid of the drive bunch can be superluminal or subluminal by utilizing the chromatic dependence of the focusing optics. We first derive the focal velocity and the characteristic length of the focal spot in terms of the focal length and an energy chirp. We then demonstrate using multi-dimensional particle-in-cell simulations that a wake driven by a superluminally propagating flying focus of an electron beam can generate GeV-level electron bunches with ultra-low normalized slice emittance ($sim$30 nm rad), high current ($sim$ 17 kA), low slice energy-spread ($sim$0.1%) and therefore high normalized brightness ($>10^{19}$ A/rad$^2$/m$^2$) in a plasma of density $sim10^{19}$ cm$^{-3}$. The injection process is highly controllable and tunable by changing the focal velocity and shaping the drive beam current. Near-term experiments using the new FACET II beam could potentially produce beams with brightness exceeding $10^{20}$ A/rad$^2$/m$^2$.
An investigation of the possible inflation of stimulated Brillouin backscattering (SBS) due to ion kinetic effects is presented using electromagnetic particle simulations and integrations of three-wave coupled-mode equations with linear and nonlinear models of the nonlinear ion physics. Electrostatic simulations of linear ion Landau damping in an ion acoustic wave, nonlinear reduction of damping due to ion trapping, and nonlinear frequency shifts due to ion trapping establish a baseline for modeling the electromagnetic SBS simulations. Systematic scans of the laser intensity have been undertaken with both one-dimensional particle simulations and coupled-mode-equations integrations, and two values of the electron-to-ion temperature ratio (to vary the linear ion Landau damping) are considered. Three of the four intensity scans have evidence of SBS inflation as determined by observing more reflectivity in the particle simulations than in the corresponding three-wave mode-coupling integrations with a linear ion-wave model, and the particle simulations show evidence of ion trapping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا