ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-bright Electron Bunch Injection in a Plasma Wakefield Driven by a Superluminal Flying Focus Electron Beam

99   0   0.0 ( 0 )
 نشر من قبل Fei Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new method for self-injection of high-quality electron bunches in the plasma wakefield structure in the blowout regime utilizing a flying focus produced by a drive-beam with an energy-chirp. In a flying focus the speed of the density centroid of the drive bunch can be superluminal or subluminal by utilizing the chromatic dependence of the focusing optics. We first derive the focal velocity and the characteristic length of the focal spot in terms of the focal length and an energy chirp. We then demonstrate using multi-dimensional particle-in-cell simulations that a wake driven by a superluminally propagating flying focus of an electron beam can generate GeV-level electron bunches with ultra-low normalized slice emittance ($sim$30 nm rad), high current ($sim$ 17 kA), low slice energy-spread ($sim$0.1%) and therefore high normalized brightness ($>10^{19}$ A/rad$^2$/m$^2$) in a plasma of density $sim10^{19}$ cm$^{-3}$. The injection process is highly controllable and tunable by changing the focal velocity and shaping the drive beam current. Near-term experiments using the new FACET II beam could potentially produce beams with brightness exceeding $10^{20}$ A/rad$^2$/m$^2$.



قيم البحث

اقرأ أيضاً

Injection of well-defined, high-quality electron populations into plasma waves is a key challenge of plasma wakefield accelerators. Here, we report on the first experimental demonstration of plasma density downramp injection in an electron-driven pla sma wakefield accelerator, which can be controlled and tuned in all-optical fashion by mJ-level laser pulses. The laser pulse is directed across the path of the plasma wave before its arrival, where it generates a local plasma density spike in addition to the background plasma by tunnelling ionization of a high ionization threshold gas component. This density spike distorts the plasma wave during the density downramp, causing plasma electrons to be injected into the plasma wave. By tuning the laser pulse energy and shape, highly flexible plasma density spike profiles can be designed, enabling dark current free, versatile production of high-quality electron beams. This in turn permits creation of unique injected beam configurations such as counter-oscillating twin beamlets.
It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wav e phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.
118 - A. Aimidula , P. Zhang 2018
In the past decades, beam-driven plasma wakefield acceleration (PWFA) experiments have seen remarkable progress by using high-energy particle beams such as electron, positron and proton beams to drive wakes in neutral gas or pre-ionized plasma. This review highlights a few recent experiments in the world to compare experiment parameters and results.
84 - K.V. Lotov , V.A. Minakov 2020
Seeded self-modulation in a plasma can transform a long proton beam into a train of micro-bunches that can excite a strong wakefield over long distances, but this needs the plasma to have a certain density profile with a short-scale ramp up. For the parameters of the AWAKE experiment at CERN, we numerically study which density profiles are optimal if the self-modulation is seeded by a short electron bunch. With the optimal profiles, it is possible to freeze the wakefield at approximately half the wavebreaking level. High-energy electron bunches (160 MeV) are less efficient seeds than low-energy ones (18 MeV), because the wakefield of the former lasts longer than necessary for efficient seeding.
Plasma wakefield dynamics over timescales up to 800 ps, approximately 100 plasma periods, are studied experimentally at the Advanced Wakefield Experiment (AWAKE). The development of the longitudinal wakefield amplitude driven by a self-modulated prot on bunch is measured using the external injection of witness electrons that sample the fields. In simulation, resonant excitation of the wakefield causes plasma electron trajectory crossing, resulting in the development of a potential outside the plasma boundary as electrons are transversely ejected. Trends consistent with the presence of this potential are experimentally measured and their dependence on wakefield amplitude are studied via seed laser timing scans and electron injection delay scans.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا