ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser Compression via fast-extending plasma gratings

79   0   0.0 ( 0 )
 نشر من قبل Zhaohui Wu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is proposed a new method of compressing laser pulse by fast extending plasma gratings(FEPG), which is created by ionizing the hypersound wave generated by stimulated Brillouin scattering(SBS) in the background gas. Ionized by a short laser pulse, the phonon forms a light-velocity FEPG to fully reflect a resonant pump laser. As the reflecting surface moves with a light velocity, the reflected pulse is temporally overlapped and compressed. This regime is supported by the simulation results of a fully kinetic particle-in-cell(PIC) code Opic with a laser wavelength of 1um, displaying a pump pulse is compressed from 13ps to a few cycles(7.2fs), with an efficiency close to 80%. It is a promising method to produce critical laser powers due to several features: high efficiency without a linear stage, robustness to plasma instabilities, no seed and a wide range of pump intensity.



قيم البحث

اقرأ أيضاً

75 - H. H. Ma , S. M. Weng , P. Li 2020
The plasma density grating induced by intersecting intense laser pulses can be utilized as an optical compressors, polarizers, waveplates and photonic crystals for the manipulation of ultra-high-power laser pulses. However, the formation and evolutio n of the plasma density grating are still not fully understood as linear models are adopted to describe them usually. In this paper, two nonlinear theoretical models are presented to study the formation process of the plasma density grating. In the first model, a nonlinear analytical solution based on the fluid equations is presented while in the second model a particle-mesh method is adopted to investigate the kinetic effects. It is found that both models can describe the plasma density grating formation at different stages, well beyond the linear growth stage. More importantly, the second model can reproduce the phenomenon of ion wave-breaking of plasma density grating, which eventually induces the saturation of plasma density grating. Using the second model, the saturation time of the plasma density grating is obtained as a function of laser intensity and plasma density, which can be applied to estimate the lifetime of the plasma density grating in experiments. The results from these two nonlinear models are verified using particle-in-cell simulations.
201 - A. J. Kemp , F. Fiuza , A. Debayle 2013
In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progre ss in the understanding of intense laser plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multi-dimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of todays experiments for the full-scale fast ignition problem.
69 - H. Peng , C. Riconda , M. Grech 2019
Laser-generated plasma gratings are dynamic optical elements for the manipulation of coherent light at high intensities, beyond the damage threshold of solid-stated based materials. Their formation, evolution and final collapse require a detailed und erstanding. In this paper, we present a model to explain the nonlinear dynamics of high amplitude plasma gratings in the spatially periodic ponderomotive potential generated by two identical counter-propagating lasers. Both, fluid and kinetic aspects of the grating dynamics are analyzed. It is shown that the adiabatic electron compression plays a crucial role as the electron pressure may reflect the ions from the grating and induce the grating to break in an X-type manner. A single parameter is found to determine the behaviour of the grating and distinguish three fundamentally different regimes for the ion dynamics: completely reflecting, partially reflecting/partially passing, and crossing. Criteria for saturation and life-time of the grating as well as the effect of finite ion temperature are presented.
Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pile-up at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfven time.
The interaction of ultraintense laser pulses with solids is largely affected by the plasma gradient at the vacuum-solid interface, which modifies the absorption and ultimately, controls the energy distribution function of heated electrons. A micromet er scale-length plasma has been predicted to yield a significant enhancement of the energy and weight of the fast electron population and to play a major role in laser-driven proton acceleration with thin foils. We report on recent experimental results on proton acceleration from laser interaction with foil targets at ultra-relativistic intensities. We show a three-fold increase of the proton cut-off energy when a micrometer scale-length pre-plasma is introduced by irradiation with a low energy femtosecond pre-pulse. Our realistic numerical simulations agree with the observed gain of the proton cut-off energy and confirm the role of stochastic heating of fast electrons in the enhancement of the accelerating sheath field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا