ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth, saturation and collapse of laser-driven plasma density gratings

76   0   0.0 ( 0 )
 نشر من قبل Suming Weng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The plasma density grating induced by intersecting intense laser pulses can be utilized as an optical compressors, polarizers, waveplates and photonic crystals for the manipulation of ultra-high-power laser pulses. However, the formation and evolution of the plasma density grating are still not fully understood as linear models are adopted to describe them usually. In this paper, two nonlinear theoretical models are presented to study the formation process of the plasma density grating. In the first model, a nonlinear analytical solution based on the fluid equations is presented while in the second model a particle-mesh method is adopted to investigate the kinetic effects. It is found that both models can describe the plasma density grating formation at different stages, well beyond the linear growth stage. More importantly, the second model can reproduce the phenomenon of ion wave-breaking of plasma density grating, which eventually induces the saturation of plasma density grating. Using the second model, the saturation time of the plasma density grating is obtained as a function of laser intensity and plasma density, which can be applied to estimate the lifetime of the plasma density grating in experiments. The results from these two nonlinear models are verified using particle-in-cell simulations.

قيم البحث

اقرأ أيضاً

It is proposed a new method of compressing laser pulse by fast extending plasma gratings(FEPG), which is created by ionizing the hypersound wave generated by stimulated Brillouin scattering(SBS) in the background gas. Ionized by a short laser pulse, the phonon forms a light-velocity FEPG to fully reflect a resonant pump laser. As the reflecting surface moves with a light velocity, the reflected pulse is temporally overlapped and compressed. This regime is supported by the simulation results of a fully kinetic particle-in-cell(PIC) code Opic with a laser wavelength of 1um, displaying a pump pulse is compressed from 13ps to a few cycles(7.2fs), with an efficiency close to 80%. It is a promising method to produce critical laser powers due to several features: high efficiency without a linear stage, robustness to plasma instabilities, no seed and a wide range of pump intensity.
69 - H. Peng , C. Riconda , M. Grech 2019
Laser-generated plasma gratings are dynamic optical elements for the manipulation of coherent light at high intensities, beyond the damage threshold of solid-stated based materials. Their formation, evolution and final collapse require a detailed und erstanding. In this paper, we present a model to explain the nonlinear dynamics of high amplitude plasma gratings in the spatially periodic ponderomotive potential generated by two identical counter-propagating lasers. Both, fluid and kinetic aspects of the grating dynamics are analyzed. It is shown that the adiabatic electron compression plays a crucial role as the electron pressure may reflect the ions from the grating and induce the grating to break in an X-type manner. A single parameter is found to determine the behaviour of the grating and distinguish three fundamentally different regimes for the ion dynamics: completely reflecting, partially reflecting/partially passing, and crossing. Criteria for saturation and life-time of the grating as well as the effect of finite ion temperature are presented.
61 - V. N. Rai 2014
This paper presents a simplified theoretical model for the study of emission from laser produced plasma to better understand the processes and the factors involved in the onset of saturation in plasma emission as well as in increasing emission due to plasma confinement. This model considers that plasma emission is directly proportional to the square of plasma density, its volume and the fraction of laser pulse absorbed through inverse Bremsstrahlung in the pre-formed plasma plume produced by the initial part of the laser. This shows that plasma density and temperature decide the threshold for saturation in emission, which occurs for electron ion collision frequency more than 10E13 Hz, beyond which plasma shielding effects become dominant. Any decrease in plasma sound (expansion) velocity shows drastic enhancement in emission supporting the results obtained by magnetic as well as spatial confinement of laser produced plasma. The temporal evolution of plasma emission in the absence and presence of plasma confinement along with the effect of laser pulse duration are also discussed in the light of this model.
Relativistic electrons generated by the interaction of petawatt-class short laser pulses with solid targets can be used to generate bright X-rays via bremsstrahlung. The efficiency of laser energy transfer into these electrons depends on multiple par ameters including the focused intensity and pre-plasma level. This paper reports experimental results from the interaction of a high intensity petawatt-class glass laser pulses with solid targets at a maximum intensity of $10^{19}$ W/cm$^2$. In-situ measurements of specularly reflected light are used to provide an upper bound of laser absorption and to characterize focused laser intensity, the pre-plasma level and the generation mechanism of second harmonic light. The measured spectrum of electrons and bremsstrahlung radiation provide information about the efficiency of laser energy transfer.
72 - J.H. Bin , M. Yeung , Z. Gong 2017
We report on the experimental studies of laser driven ion acceleration from double-layer target where a near-critical density target with a few-micron thickness is coated in front of a nanometer thin diamond-like carbon foil. A significant enhancemen t of proton maximum energies from 12 to ~30 MeV is observed when relativistic laser pulse impinge on the double-layer target under linear polarization. We attributed the enhanced acceleration to superponderomotive electrons that were simultaneously measured in the experiments with energies far beyond the free-electron ponderomotive limit. Our interpretation is supported by two-dimensional simulation results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا