ﻻ يوجد ملخص باللغة العربية
In applying large-momentum effective theory, renormalization of the Euclidean correlators in lattice regularization is a challenge due to linear divergences in the self-energy of Wilson lines. Based on lattice QCD matrix elements of the quasi-PDF operator at lattice spacing $a$= 0.03 fm $sim$ 0.12 fm with clover and overlap valence quarks on staggered and domain-wall sea, we design a strategy to disentangle the divergent renormalization factors from finite physics matrix elements, which can be matched to a continuum scheme at short distance such as dimensional regularization and minimal subtraction. Our results indicate that the renormalization factors are universal in the hadron state matrix elements. Moreover, the physical matrix elements appear independent of the valence fermion formulations. These conclusions remain valid even with HYP smearing which reduces the statistical errors albeit reducing control of the renormalization procedure. Moreover, we find a large non-perturbative effect in the popular RI/MOM and ratio renormalization scheme, suggesting favor of the hybrid renormalization procedure proposed recently.
We analyze the lattice spacing dependence for the pion unpolarized matrix element of a quark bilinear operator with Wilson link (quasi-PDF operator) in the rest frame, using 13 lattice spacings ranging from 0.032 fm to 0.121 fm. We compare results fo
Quasi-PDFs provide a path toward an ab initio calculation of parton distribution functions (PDFs) using lattice QCD. One of the problems faced in calculations of quasi-PDFs is the renormalization of a nonlocal operator. By introducing an auxiliary fi
We propose a novel algorithm for calculating multi-baryon correlation functions on the lattice. By considering the permutation of quarks (Wick contractions) and color/spinor contractions simultaneously, we construct a unified index list for the contr
We present a general framework to calculate the properties of relativistic compound systems from the knowledge of an elementary Hamiltonian. Our framework provides a well-controlled nonperturbative calculational scheme which can be systematically imp
Ideas and recent results for light-front Hamiltonian quantisation of lattice gauge theories.