ترغب بنشر مسار تعليمي؟ اضغط هنا

Unified contraction algorithm for multi-baryon correlators on the lattice

99   0   0.0 ( 0 )
 نشر من قبل Takumi Doi
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel algorithm for calculating multi-baryon correlation functions on the lattice. By considering the permutation of quarks (Wick contractions) and color/spinor contractions simultaneously, we construct a unified index list for the contraction where the redundancies in the original contraction are eliminated. We find that a significant reduction in the computational cost of correlators is achieved, e.g., by a factor of 192 for $^3$H and $^3$He nuclei, and a factor of 20736 for the $^4$He nucleus, without assuming isospin symmetry. A further reduction is possible by exploiting isospin symmetry, and/or interchange symmetries associated with sink baryons, if such symmetries exist. Extensions for systems with hyperons are presented as well.



قيم البحث

اقرأ أيضاً

Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to see k for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for the system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons ($XiXi$ and $NN$), and three and four baryons ($^3{rm He}$ and $^4{rm He})$ as well, employing (2+1)-flavor lattice QCD at $m_{pi}=0.51$ GeV on four lattice volumes with $L=$ 2.9, 3.6, 4.3 and 5.8 fm. Caution is given for drawing conclusion on the bound $NN$, $3N$ and $4N$ systems only based on the temporal correlation functions.
217 - Gert Aarts 2015
These lecture notes contain an elementary introduction to lattice QCD at nonzero chemical potential. Topics discussed include chemical potential in the continuum and on the lattice; the sign, overlap and Silver Blaze problems; the phase boundary at s mall chemical potential; imaginary chemical potential; and complex Langevin dynamics. An incomplete overview of other approaches is presented as well. These lectures are meant for postgraduate students and postdocs with an interest in extreme QCD. A basic knowledge of lattice QCD is assumed but not essential. Some exercises are included at the end.
117 - Sinya Aoki , Takumi Doi 2020
In this article, we review the HAL QCD method to investigate baryon-baryon interactions such as nuclear forces in lattice QCD. We first explain our strategy in detail to investigate baryon-baryon interactions by defining potentials in field theories such as QCD. We introduce the Nambu-Bethe-Salpeter (NBS) wave functions in QCD for two baryons below the inelastic threshold. We then define the potential from NBS wave functions in terms of the derivative expansion, which is shown to reproduce the scattering phase shifts correctly below the inelastic threshold. Using this definition, we formulate a method to extract the potential in lattice QCD. Secondly, we discuss pros and cons of the HAL QCD method, by comparing it with the conventional method, where one directly extracts the scattering phase shifts from the finite volume energies through the Luschers formula. We give several theoretical and numerical evidences that the conventional method combined with the naive plateau fitting for the finite volume energies in the literature so far fails to work on baryon-baryon interactions due to contaminations of elastic excited states. On the other hand, we show that such a serious problem can be avoided in the HAL QCD method by defining the potential in an energy-independent way. We also discuss systematics of the HAL QCD method, in particular errors associated with a truncation of the derivative expansion. Thirdly, we present several results obtained from the HAL QCD method, which include (central) nuclear force, tensor force, spin-orbital force, and three nucleon force. We finally show the latest results calculated at the nearly physical pion mass, $m_pi simeq 146$ MeV, including hyperon forces which lead to form $OmegaOmega$ and $NOmega$ dibaryons.
We report the recent progress on the determination of three-nucleon forces (3NF) in lattice QCD. We utilize the Nambu-Bethe-Salpeter (NBS) wave function to define the potential in quantum field theory, and extract two-nucleon forces (2NF) and 3NF on equal footing. The enormous computational cost for calculating multi-baryon correlators on the lattice is drastically reduced by developing a novel contraction algorithm (the unified contraction algorithm). Quantum numbers of the three-nucleon (3N) system are chosen to be (I, J^P)=(1/2,1/2^+) (the triton channel), and we extract 3NF in which three nucleons are aligned linearly with an equal spacing. Lattice QCD simulations are performed using N_f=2 dynamical clover fermion configurations at the lattice spacing of a = 0.156 fm on a 16^3 x 32 lattice with a large quark mass corresponding to m(pi)= 1.13 GeV. Repulsive 3NF is found at short distance.
State-of-the-art lattice QCD studies of hot and dense strongly interacting matter currently rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliabil ity of such methods. Here we use the more direct sign reweighting method to perform lattice QCD simulation of the QCD chiral transition at finite real baryon density on phenomenologically relevant lattices. This method does not require analytic continuation and avoids the overlap problem associated with generic reweighting schemes, so has only statistical but no uncontrolled systematic uncertainties for a fixed lattice setup. This opens up a new window to study hot and dense strongly interacting matter from first principles. We perform simulations up to a baryochemical potential-temperature ratio of $mu_B/T=2.5$ covering most of the RHIC Beam Energy Scan range in the chemical potential. We also clarify the connection of the approach to the more traditional phase reweighting method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا