ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the one-dimensional derivative nonlinear Schrodinger equations of the form $iu_t-u_{xx}+ilambdaabs{u}^k u_x=0$ with non-zero $lambdain Real$ and any real number $kgs 5$. We establish the local well-posedness of the Cauchy problem with any initial data in $H^{1/2}$ by using the gauge transformation and the Littlewood-Paley decomposition.
We consider the derivative nonlinear Schrodinger equation in one space dimension, posed both on the line and on the circle. This model is known to be completely integrable and $L^2$-critical with respect to scaling. The first question we discuss is
We study the Cauchy problem for the generalized elliptic and non-elliptic derivative nonlinear Schrodinger equations, the existence of the scattering operators and the global well posedness of solutions with small data in Besov spaces and in modulati
The initial-boundary value problem (IBVP) for the nonlinear Schrodinger (NLS) equation on the half-plane with nonzero boundary data is studied by advancing a novel approach recently developed for the well-posedness of the cubic NLS on the half-line,
The initial value problem for the $L^{2}$ critical semilinear Schrodinger equation in $R^n, n geq 3$ is considered. We show that the problem is globally well posed in $H^{s}({Bbb R^{n}})$ when $1>s>frac{sqrt{7}-1}{3}$ for $n=3$, and when $1>s> frac{-
We consider the long time well-posedness of the Cauchy problem with large Sobolev data for a class of nonlinear Schrodinger equations (NLS) on $mathbb{R}^2$ with power nonlinearities of arbitrary odd degree. Specifically, the method in this paper app