ﻻ يوجد ملخص باللغة العربية
Two-photon absorption (TPA) and other nonlinear interactions of molecules with time-frequency-entangled photon pairs (EPP) has been predicted to display a variety of fascinating effects. Therefore, their potential use in practical quantum-enhanced molecular spectroscopy requires close examination. This paper presents in tutorial style a detailed theoretical study of one- and two-photon absorption by molecules, focusing on how to treat the quantum nature of light. We review some basic quantum optics theory, then we review the density-matrix (Liouville) derivation of molecular optical response, emphasizing how to incorporate quantum states of light into the treatment. For illustration we treat in detail the TPA of photon pairs created by spontaneous parametric down conversion, with an emphasis on how quantum light TPA differs from that with classical light. In particular, we treat the question of how much enhancement of the TPA rate can be achieved using entangled states. The paper includes review of known theoretical methods and results, as well as some extensions, especially the comparison of TPA processes that occur via far-off-resonant intermediate states only and those that involve off-resonant intermediate state by virtue of dephasing processes. A brief discussion of the main challenges facing experimental studies of entangled TPA is also given.
While two-photon absorption (TPA) and other forms of nonlinear interactions of molecules with isolated time-frequency-entangled photon pairs (EPP) have been predicted to display a variety of fascinating effects, their potential use in practical quant
Two-photon absorption (TPA) is of fundamental importance in super-resolution imaging and spectroscopy. Its nonlinear character allows for the prospect of using quantum resources, such as entanglement, to improve measurement precision or to gain new i
Entangled two-photon absorption spectroscopy (TPA) has been widely recognized as a powerful tool for revealing relevant information about the structure of complex molecular systems. However, to date, the experimental implementation of this technique
Path-entangled N-photon states can be obtained through the coalescence of indistinguishable photons inside linear networks. They are key resources for quantum enhanced metrology, quantum imaging, as well as quantum computation based on quantum walks.
Entangled photon pairs have been promised to deliver a substantial quantum advantage for two-photon absorption spectroscopy. However, recent work has challenged the previously reported magnitude of quantum enhancement in two-photon absorption. Here,