ﻻ يوجد ملخص باللغة العربية
With the successes of $f(R)$ theory as a neutral modification of Einsteins general relativity (GR), we continue our study in this field and attempt to find general natural and charged black hole (BH) solutions. In the previous papers cite{Nashed:2020mnp,Nashed:2020tbp}, we applied the field equation of the $f(R)$ gravity to a spherically symmetric space-time $ds^2=-U(r)dt^2+frac{dr^2}{V(r)}+r^2 left( dtheta^2+sin^2theta dphi^2 right)$ with unequal metric potentials $U(r)$ and $V(r)$ and with/without electric charge. Then we have obtained equations which include all the possible static solutions with spherical symmetry. To ensure the closed form of system of the resulting differential equations in order to obtain specific solutions, we assumed the derivative of the $f(R)$ with respect to the scalar curvature $R$ to have a form $F_1(r)=frac{df(R(r))}{dR(r)} propto frac{c}{r^n}$ but in case $n>2$, the resulting black hole solutions with/without charge do not generate asymptotically GR BH solutions in the limit $crightarrow 0$ which means that the only case that can generate GR BHs is $n=2$. In this paper, we assume another form, i.e., $F_1(r)= 1-frac{F_0-left(n-3right)}{r^n}$ with a constant $F_0$ and show that we can generate asymptotically GR BH solutions for $n>2$ but we show that the $n=2$ case is not allowed. This form of $F_1(r)$ could be the most acceptable physical form that we can generate from it physical metric potentials that can have a well-known asymptotic form and we obtain the metric of the Einstein general relativity in the limit of $F_0to n-3$. We show that the form of the electric charge depends on $n$ and that $n eq 2$. Our study shows that the power $n$ is sensitive and why we should exclude the case $n=2$ for the choice of $F_1(r)$ presented in this study.
In this paper, we explore the interior dynamics of neutral and charged black holes in $f(R)$ gravity. We transform $f(R)$ gravity from the Jordan frame into the Einstein frame and simulate scalar collapses in flat, Schwarzschild, and Reissner-Nordstr
The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in $f(R)$ grav
Recent observation shows that general relativity (GR) is not valid in the strong regime. $mathit{f(R)}$ gravity where $mathit{R}$ is the Ricci scalar, is regarded to be one of good candidates able to cure the anomalies appeared in the conventional ge
We investigate whether the new horizon first law proposed recently still work in $f(R)$ theory. We identify the entropy and the energy of black hole as quantities proportional to the corresponding value of integration, supported by the fact that the
We point out that there are only three polarizations for gravitational waves in $f(R)$ gravity, and the polarization due to the massive scalar mode is a mix of the pure longitudinal and transverse breathing polarization. The classification of the six