ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergence of internetwork magnetic fields through the solar atmosphere

97   0   0.0 ( 0 )
 نشر من قبل Milan Go\\v{s}i\\'c
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Internetwork (IN) magnetic fields are highly dynamic, short-lived magnetic structures that populate the interior of supergranular cells. Since they emerge all over the Sun, these small-scale fields bring a substantial amount of flux, and therefore energy, to the solar surface. Because of this, IN fields are crucial for understanding the quiet Sun (QS) magnetism. However, they are weak and produce very small polarization signals, which is the reason why their properties and impact on the energetics and dynamics of the solar atmosphere are poorly known. Here we use coordinated, high-resolution, multiwavelength observations obtained with the Swedish 1-m Solar Telescope (SST) and the textit{Interface Region Imaging Spectrograph} (IRIS) to follow the evolution of IN magnetic loops as they emerge into the photosphere and reach the chromosphere and transition region. We studied in this paper three flux emergence events having total unsigned magnetic fluxes of $1.9times10^{18}$, $2.5times10^{18}$, and $5.3times10^{18}$~Mx. The footpoints of the emerging IN bipoles are clearly seen to appear in the photosphere and to rise up through the solar atmosphere, as observed in ion{Fe}{1} 6173 AA/ and ion{Mg}{1} b$_2$ 5173 AA/ magnetograms, respectively. For the first time, our polarimetric measurements taken in the chromospheric ion{Ca}{2} 8542 AA/ line provide direct observational evidence that IN fields are capable of reaching the chromosphere. Moreover, using IRIS data, we study the effects of these weak fields on the heating of the chromosphere and transition region.

قيم البحث

اقرأ أيضاً

We study a granular-sized magnetic flux emergence event that occurred in NOAA 11024 in July 2009. The observations were made with the CRISP spectropolarimeter at the Swedish 1 m Solar Telescope achieving a spatial resolution of 0.14. Simultaneous ful l Stokes observations of the two photospheric Fe I lines at 630.2 nm and the chromospheric Ca II 854.2 nm line allow us to describe in detail the emergence process across the solar atmosphere. We report here on 3D semi-spherical bubble events, where instead of simple magnetic footpoints, we observe complex semi-circular feet straddling a few granules. The most characteristic signature in these events is the observation of a dark bubble in filtergrams taken in the wings of the Ca II 854.2 nm line. We can infer how the bubble rises through the solar atmosphere as we see it progressing from the wings to the core of Ca II 854.2 nm. In the photosphere, the magnetic bubble shows mean upward Doppler velocities of 2 km/s. In about 3.5 minutes it travels some 1100 km to reach the mid chromosphere, implying an average ascent speed of 5.2 km/s. To aid the interpretation of the observations, we carry out 3D numerical simulations of the evolution of a horizontal, untwisted magnetic flux sheet injected in the convection zone, using the Bifrost code. The computational domain spans from the upper convection zone to the lower corona. In the modeled chromosphere the rising flux sheet produces a large, cool, magnetized bubble. We compare this bubble with the observed ones and find excellent agreement, including similar field strengths and velocity signals in the photosphere and chromosphere, temperature deficits, ascent speeds, expansion velocities, and lifetimes.
While the longitudinal field that dominates photospheric network regions has been studied extensively, small scale transverse fields have recently been found to be ubiquitous in the quiet internetwork photosphere. Few observations have captured how t his field evolves. We aim to statistically characterise the magnetic properties and observe the temporal evolution of small scale magnetic features. We present two high spatial/temporal resolution observations that reveal the dynamics of two disk centre internetwork regions taken by the new GRIS/IFU (GREGOR Infrared Spectrograph Integral Field Unit) with the highly magnetically sensitive Fe I line pair at 15648.52 {AA} and 15652.87 {AA}. With the SIR code, we consider two inversion schemes: scheme 1 (S1), where a magnetic atmosphere is embedded in a field free medium, and scheme 2 (S2), with two magnetic models and a fixed stray light component. S1
We study the ascent of granular-sized magnetic bubbles from the solar photosphere through the chromosphere into the transition region and above, for the first time. Such events occurred in a flux emerging region in NOAA 11850 on September 25, 2013. D uring that time, the first co-observing campaign between the Swedish 1-m Solar Telescope and the IRIS spacecraft was carried out. Simultaneous observations of the chromospheric H$alpha$ 656.28 nm and ion{Ca}{2} 854.2 nm lines, plus the photospheric ion{Fe}{1} 630.25 nm line, were made with the CRISP spectropolarimeter at the SST reaching a spatial resolution of 0.14. At the same time, IRIS was performing a four-step dense raster of the said emerging flux region, taking slit-jaw images at 133 (C~{sc ii}, transition region), 140 (ion{Si}{4}, transition region), 279.6 (ion{Mg}{2} k, core, upper chromosphere), and 283.2 nm (ion{Mg}{2} k, wing, photosphere). Spectroscopy of several lines was performed by the IRIS spectrograph in the far and near ultraviolet, of which we have used the ion{Si}{4} 140.3 and the ion{Mg}{2} k 279.6 nm lines. Coronal images from the Atmospheric Imaging Assembly of the Solar Dynamics Observatory were used to investigate the possible coronal signatures of the flux emergence events. The photospheric and chromospheric properties of small-scale emerging magnetic bubbles have been described in detail in Ortiz et al. (2014). Here we are able to follow such structures up to the transition region. We describe the properties, including temporal delays, of the observed flux emergence in all layers. We believe this may be an important mechanism of transporting energy and magnetic flux from subsurface layers to the transition region and corona.
The motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating the turbulent diffusion coefficien t in flux-transport dynamo models and in determining the Alfven wave excitation spectrum for coronal heating models. We examine the motions of internetwork flux elements in a 24 hour long Hinode/NFI magnetogram sequence with 90 second cadence, and study both the scaling of their mean squared displacement and the shape of their displacement probability distribution as a function of time. We find that the mean squared displacement scales super-diffusively with a slope of about 1.48. Super-diffusive scaling has been observed in other studies for temporal increments as small as 5 seconds, increments over which ballistic scaling would be expected. Using high-cadence MURaM simulations, we show that the observed super-diffusive scaling at short temporal increments is a consequence of random changes in the barycenter positions due to flux evolution. We also find that for long temporal increments, beyond granular lifetimes, the observed displacement distribution deviates from that expected for a diffusive process, evolving from Rayleigh to Gaussian. This change in the distribution can be modeled analytically by accounting for supergranular advection along with motions due to granulation. These results complicate the interpretation of magnetic element motions as strictly advective or diffusive on short and long timescales and suggest that measurements of magnetic element motions must be used with caution in turbulent diffusion or wave excitation models. We propose that passive trace motions in measured photospheric flows may yield more robust transport statistics.
The magnetic network observed on the solar surface harbors a sizable fraction of the total quiet Sun flux. However, its origin and maintenance are not well known. Here we investigate the contribution of internetwork magnetic fields to the network flu x. Internetwork fields permeate the interior of supergranular cells and show large emergence rates. We use long-duration sequences of magnetograms acquired by Hinode and an automatic feature tracking algorithm to follow the evolution of network and internetwork flux elements. We find that 14% of the quiet Sun flux is in the form of internetwork fields, with little temporal variations. Internetwork elements interact with network patches and modify the flux budget of the network, either by adding flux (through merging processes) or by removing it (through cancellation events). Mergings appear to be dominant, so the net flux contribution of the internetwork is positive. The observed rate of flux transfer to the network is 1.5 x 10^24 Mx day^-1 over the entire solar surface. Thus, the internetwork supplies as much flux as is present in the network in only 9-13 hours. Taking into account that not all the transferred flux is incorporated into the network, we find that the internetwork would be able to replace the entire network flux in approximately 18-24 hours. This renders the internetwork the most important contributor to the network, challenging the view that ephemeral regions are the main source of flux in the quiet Sun. About 40% of the total internetwork flux eventually ends up in the network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا