ﻻ يوجد ملخص باللغة العربية
While the longitudinal field that dominates photospheric network regions has been studied extensively, small scale transverse fields have recently been found to be ubiquitous in the quiet internetwork photosphere. Few observations have captured how this field evolves. We aim to statistically characterise the magnetic properties and observe the temporal evolution of small scale magnetic features. We present two high spatial/temporal resolution observations that reveal the dynamics of two disk centre internetwork regions taken by the new GRIS/IFU (GREGOR Infrared Spectrograph Integral Field Unit) with the highly magnetically sensitive Fe I line pair at 15648.52 {AA} and 15652.87 {AA}. With the SIR code, we consider two inversion schemes: scheme 1 (S1), where a magnetic atmosphere is embedded in a field free medium, and scheme 2 (S2), with two magnetic models and a fixed stray light component. S1
The motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating the turbulent diffusion coefficien
Internetwork (IN) magnetic fields are highly dynamic, short-lived magnetic structures that populate the interior of supergranular cells. Since they emerge all over the Sun, these small-scale fields bring a substantial amount of flux, and therefore en
This paper is the second in a series of studies working towards constructing a realistic, evolving, non-potential coronal model for the solar magnetic carpet. In the present study, the interaction of two magnetic elements is considered. Our objective
Magnetic fields are one of the most important drivers of the highly dynamic processes that occur in the lower solar atmosphere. They span a broad range of sizes, from large- and intermediate-scale structures such as sunspots, pores and magnetic knots
Routine ultraviolet imaging of the Suns upper atmosphere shows the spectacular manifestation of solar activity; yet we remain blind to its main driver, the magnetic field. Here we report unprecedented spectropolarimetric observations of an active reg