ﻻ يوجد ملخص باللغة العربية
Adversarial examples causing evasive predictions are widely used to evaluate and improve the robustness of machine learning models. However, current studies on adversarial examples focus on supervised learning tasks, relying on the ground-truth data label, a targeted objective, or supervision from a trained classifier. In this paper, we propose a framework of generating adversarial examples for unsupervised models and demonstrate novel applications to data augmentation. Our framework exploits a mutual information neural estimator as an information-theoretic similarity measure to generate adversarial examples without supervision. We propose a new MinMax algorithm with provable convergence guarantees for efficient generation of unsupervised adversarial examples. Our framework can also be extended to supervised adversarial examples. When using unsupervised adversarial examples as a simple plug-in data augmentation tool for model retraining, significant improvements are consistently observed across different unsupervised tasks and datasets, including data reconstruction, representation learning, and contrastive learning. Our results show novel methods and advantages in studying and improving robustness of unsupervised learning problems via adversarial examples. Our codes are available at https://github.com/IBM/UAE.
We introduce two challenging datasets that reliably cause machine learning model performance to substantially degrade. The datasets are collected with a simple adversarial filtration technique to create datasets with limited spurious cues. Our datase
Recently, researchers have discovered that the state-of-the-art object classifiers can be fooled easily by small perturbations in the input unnoticeable to human eyes. It is also known that an attacker can generate strong adversarial examples if she
Extensive Unsupervised Domain Adaptation (UDA) studies have shown great success in practice by learning transferable representations across a labeled source domain and an unlabeled target domain with deep models. However, previous works focus on impr
Deep neural networks (DNNs) are vulnerable to adversarial examples with small perturbations. Adversarial defense thus has been an important means which improves the robustness of DNNs by defending against adversarial examples. Existing defense method
CAPTCHA (Completely Automated Public Truing test to tell Computers and Humans Apart) is a widely used technology to distinguish real users and automated users such as bots. However, the advance of AI technologies weakens many CAPTCHA tests and can in