ﻻ يوجد ملخص باللغة العربية
We study three different measures of quantum correlations -- entanglement spectrum, entanglement entropy, and logarithmic negativity -- for (1+1)-dimensional massive scalar field in flat spacetime. The entanglement spectrum for the discretized scalar field in the ground state indicates a cross-over in the zero-mode regime, which is further substantiated by an analytical treatment of both entanglement entropy and logarithmic negativity. The exact nature of this cross-over depends on the boundary conditions used -- the leading order term switches from a $log$ to $log-log$ behavior for the Periodic and Neumann boundary conditions. In contrast, for Dirichlet, it is the parameters within the leading $log-log$ term that are switched. We show that this cross-over manifests as a change in the behavior of the leading order divergent term for entanglement entropy and logarithmic negativity close to the zero-mode limit. We thus show that the two regimes have fundamentally different information content. Furthermore, an analysis of the ground state fidelity shows us that the region between critical point $Lambda=0$ and the crossover point is dominated by zero-mode effects, featuring an explicit dependence on the IR cutoff of the system. For the reduced state of a single oscillator, we show that this cross-over occurs in the region $Nam_fsim mathscr{O}(1)$.
We determine both analytically and numerically the entanglement between chiral degrees of freedom in the ground state of massive perturbations of 1+1 dimensional conformal field theories quantised on a cylinder. Analytic predictions are obtained from
Finding pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace is necessarily a challenging task. Nevertheless, such purifications play the key role in characterizing quantum information-theo
We show how to efficiently compute the derivative (when it exists) of the solution map of log-log convex programs (LLCPs). These are nonconvex, nonsmooth optimization problems with positive variables that become convex when the variables, objective f
We calculate log corrections to the entropy of three-dimensional black holes with soft hairy boundary conditions. Their thermodynamics possesses some special features that preclude a naive direct evaluation of these corrections, so we follow two diff
We study in this article the hydrodynamic limit in the macroscopic regime of the coupled system of stochastic differential equations, begin{equation} dlambda_t^i=frac{1}{sqrt{N}} dW_t^i - V(lambda_t^i) dt+ frac{beta}{2N} sum_{j ot=i} frac{dt}{lambda^