ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement and Complexity of Purification in (1+1)-dimensional free Conformal Field Theories

386   0   0.0 ( 0 )
 نشر من قبل Alexander Jahn
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Finding pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace is necessarily a challenging task. Nevertheless, such purifications play the key role in characterizing quantum information-theoretic properties of mixed states via entanglement and complexity of purifications. In this article, we analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories using, for the first time, the~most general Gaussian purifications. We provide a comprehensive comparison with existing results and identify universal properties. We further discuss important subtleties in our setup: the massless limit of the free bosonic theory and the corresponding behaviour of the mutual information, as well as the Hilbert space structure under the Jordan-Wigner mapping in the spin chain model of the Ising conformal field theory.

قيم البحث

اقرأ أيضاً

We explore a conformal field theoretic interpretation of the holographic entanglement of purification, which is defined as the minimal area of entanglement wedge cross section. We argue that in AdS3/CFT2, the holographic entanglement of purification agrees with the entanglement entropy for a purified state, obtained from a special Weyl transformation, called path-integral optimizations. By definition, this special purified state has the minimal path-integral complexity. We confirm this claim in several examples.
We compute the entanglement of purification (EoP) in a 2d free scalar field theory with various masses. This quantity measures correlations between two subsystems and is reduced to the entanglement entropy when the total system is pure. We obtain exp licit numerical values by assuming minimal gaussian wave functionals for the purified states. We find that when the distance between the subsystems is large, the EoP behaves like the mutual information. However, when the distance is small, the EoP shows a characteristic behavior which qualitatively agrees with the conjectured holographic computation and which is different from that of the mutual information. We also study behaviors of mutual information in purified spaces and violations of monogamy/strong superadditivity.
We determine both analytically and numerically the entanglement between chiral degrees of freedom in the ground state of massive perturbations of 1+1 dimensional conformal field theories quantised on a cylinder. Analytic predictions are obtained from a variational Ansatz for the ground state in terms of smeared conformal boundary states recently proposed by J. Cardy, which is validated by numerical results from the Truncated Conformal Space Approach. We also extend the scope of the Ansatz by resolving ground state degeneracies exploiting the operator product expansion. The chiral entanglement entropy is computed both analytically and numerically as a function of the volume. The excellent agreement between the analytic and numerical results provides further validation for Cardys Ansatz. The chiral entanglement entropy contains a universal $O(1)$ term $gamma$ for which an exact analytic result is obtained, and which can distinguish energetically degenerate ground states of gapped systems in 1+1 dimensions.
We study three different measures of quantum correlations -- entanglement spectrum, entanglement entropy, and logarithmic negativity -- for (1+1)-dimensional massive scalar field in flat spacetime. The entanglement spectrum for the discretized scalar field in the ground state indicates a cross-over in the zero-mode regime, which is further substantiated by an analytical treatment of both entanglement entropy and logarithmic negativity. The exact nature of this cross-over depends on the boundary conditions used -- the leading order term switches from a $log$ to $log-log$ behavior for the Periodic and Neumann boundary conditions. In contrast, for Dirichlet, it is the parameters within the leading $log-log$ term that are switched. We show that this cross-over manifests as a change in the behavior of the leading order divergent term for entanglement entropy and logarithmic negativity close to the zero-mode limit. We thus show that the two regimes have fundamentally different information content. Furthermore, an analysis of the ground state fidelity shows us that the region between critical point $Lambda=0$ and the crossover point is dominated by zero-mode effects, featuring an explicit dependence on the IR cutoff of the system. For the reduced state of a single oscillator, we show that this cross-over occurs in the region $Nam_fsim mathscr{O}(1)$.
We review the imaginary time path integral approach to the quench dynamics of conformal field theories. We show how this technique can be applied to the determination of the time dependence of correlation functions and entanglement entropy for both g lobal and local quenches. We also briefly review other quench protocols. We carefully discuss the limits of applicability of these results to realistic models of condensed matter and cold atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا