ترغب بنشر مسار تعليمي؟ اضغط هنا

The rates of growth in an acylindrically hyperbolic group

191   0   0.0 ( 0 )
 نشر من قبل Koji Fujiwara
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Koji Fujiwara




اسأل ChatGPT حول البحث

Let $G$ be an acylindrically hyperbolic group on a $delta$-hyperbolic space $X$. Assume there exists $M$ such that for any generating set $S$ of $G$, $S^M$ contains a hyperbolic element on $X$. Suppose that $G$ is equationally Noetherian. Then we show the set of the growth rate of $G$ is well-ordered. The conclusion is known for hyperbolic groups, and this is a generalization. Our result applies to all lattices in simple Lie groups of rank-1, and more generally, some family of relatively hyperbolic groups. A potential application is a mapping class group, to which the theorem applies if it is equationally Noetherian.

قيم البحث

اقرأ أيضاً

155 - M. Hull 2013
We generalize a version of small cancellation theory to the class of acylindrically hyperbolic groups. This class contains many groups which admit some natural action on a hyperbolic space, including non-elementary hyperbolic and relatively hyperboli c groups, mapping class groups, and groups of outer automorphisms of free groups. Several applications of this small cancellation theory are given, including to Frattini subgroups and Kazhdan constants, the construction of various exotic quotients, and to approximating acylindrically hyperbolic groups in the topology of marked group presentations.
We prove that the outer automorphism group $Out(G)$ is residually finite when the group $G$ is virtually compact special (in the sense of Haglund and Wise) or when $G$ is isomorphic to the fundamental group of some compact $3$-manifold. To prove th ese results we characterize commensurating endomorphisms of acylindrically hyperbolic groups. An endomorphism $phi$ of a group $G$ is said to be commensurating, if for every $g in G$ some non-zero power of $phi(g)$ is conjugate to a non-zero power of $g$. Given an acylindrically hyperbolic group $G$, we show that any commensurating endomorphism of $G$ is inner modulo a small perturbation. This generalizes a theorem of Minasyan and Osin, which provided a similar statement in the case when $G$ is relatively hyperbolic. We then use this result to study pointwise inner and normal endomorphisms of acylindrically hyperbolic groups.
We prove that every acylindrically hyperbolic group that has no non-trivial finite normal subgroup satisfies a strong ping pong property, the $P_{naive}$ property: for any finite collection of elements $h_1, dots, h_k$, there exists another element $ gamma eq 1$ such that for all $i$, $langle h_i, gamma rangle = langle h_i rangle* langle gamma rangle$. We also obtain that if a collection of subgroups $H_1, dots, H_k$ is a hyperbolically embedded collection, then there is $gamma eq 1$ such that for all $i$, $langle H_i, gamma rangle = H_i * langle gamma rangle$.
We abstract the notion of an A/QI triple from a number of examples in geometric group theory. Such a triple (G,X,H) consists of a group G acting on a Gromov hyperbolic space X, acylindrically along a finitely generated subgroup H which is quasi-isome trically embedded by the action. Examples include strongly quasi-convex subgroups of relatively hyperbolic groups, convex cocompact subgroups of mapping class groups, many known convex cocompact subgroups of Out(Fn), and groups generated by powers of independent loxodromic WPD elements of a group acting on a Gromov hyperbolic space. We initiate the study of intersection and combination properties of A/QI triples. Under the additional hypothesis that G is finitely generated, we use a method of Sisto to show that H is stable. We apply theorems of Kapovich--Rafi and Dowdall--Taylor to analyze the Gromov boundary of an associated cone-off. We close with some examples and questions.
We study the set of homomorphisms from a fixed finitely generated group into a family of groups which are `uniformly acylindrically hyperbolic. Our main results reduce this study to sets of homomorphisms which do not diverge in an appropriate sense. As an application, we prove that any relatively hyperbolic group with equationally noetherian peripheral subgroups is itself equationally noetherian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا