ترغب بنشر مسار تعليمي؟ اضغط هنا

ToxCCIn: Toxic Content Classification with Interpretability

123   0   0.0 ( 0 )
 نشر من قبل Tong Xiang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the recent successes of transformer-based models in terms of effectiveness on a variety of tasks, their decisions often remain opaque to humans. Explanations are particularly important for tasks like offensive language or toxicity detection on social media because a manual appeal process is often in place to dispute automatically flagged content. In this work, we propose a technique to improve the interpretability of these models, based on a simple and powerful assumption: a post is at least as toxic as its most toxic span. We incorporate this assumption into transformer models by scoring a post based on the maximum toxicity of its spans and augmenting the training process to identify correct spans. We find this approach effective and can produce explanations that exceed the quality of those provided by Logistic Regression analysis (often regarded as a highly-interpretable model), according to a human study.

قيم البحث

اقرأ أيضاً

In this work, we demonstrate how existing classifiers for identifying toxic comments online fail to generalize to the diverse concerns of Internet users. We survey 17,280 participants to understand how user expectations for what constitutes toxic con tent differ across demographics, beliefs, and personal experiences. We find that groups historically at-risk of harassment - such as people who identify as LGBTQ+ or young adults - are more likely to to flag a random comment drawn from Reddit, Twitter, or 4chan as toxic, as are people who have personally experienced harassment in the past. Based on our findings, we show how current one-size-fits-all toxicity classification algorithms, like the Perspective API from Jigsaw, can improve in accuracy by 86% on average through personalized model tuning. Ultimately, we highlight current pitfalls and new design directions that can improve the equity and efficacy of toxic content classifiers for all users.
Detection of some types of toxic language is hampered by extreme scarcity of labeled training data. Data augmentation - generating new synthetic data from a labeled seed dataset - can help. The efficacy of data augmentation on toxic language classifi cation has not been fully explored. We present the first systematic study on how data augmentation techniques impact performance across toxic language classifiers, ranging from shallow logistic regression architectures to BERT - a state-of-the-art pre-trained Transformer network. We compare the performance of eight techniques on very scarce seed datasets. We show that while BERT performed the best, shallow classifiers performed comparably when trained on data augmented with a combination of three techniques, including GPT-2-generated sentences. We discuss the interplay of performance and computational overhead, which can inform the choice of techniques under different constraints.
We study the performance-fairness trade-off in more than a dozen fine-tuned LMs for toxic text classification. We empirically show that no blanket statement can be made with respect to the bias of large versus regular versus compressed models. Moreov er, we find that focusing on fairness-agnostic performance metrics can lead to models with varied fairness characteristics.
Platforms that support online commentary, from social networks to news sites, are increasingly leveraging machine learning to assist their moderation efforts. But this process does not typically provide feedback to the author that would help them con tribute according to the community guidelines. This is prohibitively time-consuming for human moderators to do, and computational approaches are still nascent. This work focuses on models that can help suggest rephrasings of toxic comments in a more civil manner. Inspired by recent progress in unpaired sequence-to-sequence tasks, a self-supervised learning model is introduced, called CAE-T5. CAE-T5 employs a pre-trained text-to-text transformer, which is fine tuned with a denoising and cyclic auto-encoder loss. Experimenting with the largest toxicity detection dataset to date (Civil Comments) our model generates sentences that are more fluent and better at preserving the initial content compared to earlier text style transfer systems which we compare with using several scoring systems and human evaluation.
Toxic comment classification models are often found biased toward identity terms which are terms characterizing a specific group of people such as Muslim and black. Such bias is commonly reflected in false-positive predictions, i.e. non-toxic comment s with identity terms. In this work, we propose a novel approach to tackle such bias in toxic comment classification, leveraging the notion of subjectivity level of a comment and the presence of identity terms. We hypothesize that when a comment is made about a group of people that is characterized by an identity term, the likelihood of that comment being toxic is associated with the subjectivity level of the comment, i.e. the extent to which the comment conveys personal feelings and opinions. Building upon the BERT model, we propose a new structure that is able to leverage these features, and thoroughly evaluate our model on 4 datasets of varying sizes and representing different social media platforms. The results show that our model can consistently outperform BERT and a SOTA model devised to address identity term bias in a different way, with a maximum improvement in F1 of 2.43% and 1.91% respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا