ﻻ يوجد ملخص باللغة العربية
We study the relative power of learning with gradient descent on differentiable models, such as neural networks, versus using the corresponding tangent kernels. We show that under certain conditions, gradient descent achieves small error only if a related tangent kernel method achieves a non-trivial advantage over random guessing (a.k.a. weak learning), though this advantage might be very small even when gradient descent can achieve arbitrarily high accuracy. Complementing this, we show that without these conditions, gradient descent can in fact learn with small error even when no kernel method, in particular using the tangent kernel, can achieve a non-trivial advantage over random guessing.
Recent theoretical work has shown that massively overparameterized neural networks are equivalent to kernel regressors that use Neural Tangent Kernels(NTK). Experiments show that these kernel methods perform similarly to real neural networks. Here we
The Neural Tangent Kernel (NTK) characterizes the behavior of infinitely wide neural nets trained under least squares loss by gradient descent. However, despite its importance, the super-quadratic runtime of kernel methods limits the use of NTK in la
Calibration of neural networks is a topical problem that is becoming increasingly important for real-world use of neural networks. The problem is especially noticeable when using modern neural networks, for which there is significant difference betwe
We study the power of learning via mini-batch stochastic gradient descent (SGD) on the population loss, and batch Gradient Descent (GD) on the empirical loss, of a differentiable model or neural network, and ask what learning problems can be learnt u
Bayesian structure learning allows inferring Bayesian network structure from data while reasoning about the epistemic uncertainty -- a key element towards enabling active causal discovery and designing interventions in real world systems. In this wor