ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase slips, dislocations, half-integer vortices, two-fluid hydrodynamics and the chiral anomaly in charge and spin density waves

70   0   0.0 ( 0 )
 نشر من قبل Serguei Brazovskii
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This brief review recalls some chapters in theory of sliding incommensurate density waves which may have appeared after inspirations from studies of I.E Dzyaloshinskii and collaborations with him. First we address the spin density waves which rich order parameter allows for an unusual object of a complex topological nature: a half-integer dislocation combined with a semi-vortex of the staggered magnetization. It becomes energetically preferable with respect to an ordinary dislocation due to the high Coulomb energy at low concentration of carriers. Generation of these objects should form a sequence of pi-phase slips in accordance with experimental doubling of phase-slips rate. Next, we revise the commonly employed TDGL approach which is shown to suffer from a violation of the charge conservation law resulting in nonphysical generation of particles which is particularly pronounced for electronic vortices in the course of their nucleation or motion. The suggested consistent theory exploits the chiral transformations taking into account the principle contribution of the fermionic chiral anomaly to the effective action. The derived equations clarify partitions of charges,currents and rigidity among subsystems of the condensate and normal carriers and the gluing electric field. Being non-analytical with respect to the order parameter, contrarily the conventional TDGL type, the resulting equations still allow for a numerical modeling of transient processes related to space- and spatio-temporal vorticity in DWs.

قيم البحث

اقرأ أيضاً

Many recent experiments addressed manifestations of electronic crystals, particularly the charge density waves, in nano-junctions, under electric field effect, at high magnetic fields, together with real space visualizations by STM and micro X-ray di ffraction. This activity returns the interest to stationary or transient states with static and dynamic topologically nontrivial configurations: electronic vortices as dislocations, instantons as phase slip centers, and ensembles of microscopic solitons. Describing and modeling these states and processes calls for an efficient phenomenological theory which should take into account the degenerate order parameter, various kinds of normal carriers and the electric field. Here we notice that the commonly employed time-depend Ginzburg-Landau approach suffers with violation of the charge conservation law resulting in unphysical generation of particles which is particularly strong for nucleating or moving electronic vortices. We present a consistent theory which exploits the chiral transformations taking into account the principle contribution of the fermionic chiral anomaly to the effective action. The resulting equations clarify partitions of charges, currents and rigidity among subsystems of the condensate and normal carriers. On this basis we perform the numerical modeling of a spontaneously generated coherent sequence of phase slips - the space-time vortices - serving for the conversion among the injected normal current and the collective one.
We present a general scheme to approach the space - time evolution of deformations, currents, and the electric field in charge density waves related to appearance of intrinsic topological defects: dislocations, their loops or pairs, and solitons. We derive general equations for the multi-fluid hydrodynamics taking into account the collective mode, electric field, normal electrons, and the intrinsic defects. These equations may allow to study the transformation of injected carriers from normal electrons to new periods of the charge density wave, the collective motion in constrained geometry, and the plastic states and flows. As an application, we present analytical and numerical solutions for distributions of fields around an isolated dislocation line in the regime of nonlinear screening by the gas of phase solitons.
At partial filling of a flat band, strong electronic interactions may favor gapped states harboring emergent topology with quantized Hall conductivity. Emergent topological states have been found in partially filled Landau levels and Hofstadter bands ; in both cases, a large magnetic field is required to engineer the underlying flat band. The recent observation of quantum anomalous Hall effects (QAH) in narrow band moire systems has led to the theoretical prediction that such phases may be realized even at zero magnetic field. Here we report the experimental observation of insulators with Chern number $C=1$ in the zero magnetic field limit at $ u=3/2$ and $7/2$ filling of the moire superlattice unit cell in twisted monolayer-bilayer graphene (tMBG). Our observation of Chern insulators at half-integer values of $ u$ suggests spontaneous doubling of the superlattice unit cell, in addition to spin- and valley-ferromagnetism. This is confirmed by Hartree-Fock calculations, which find a topological charge density wave ground state at half filling of the underlying $C=2$ band, in which the Berry curvature is evenly partitioned between occupied and unoccupied states. We find the translation symmetry breaking order parameter is evenly distributed across the entire folded superlattice Brillouin zone, suggesting that the system is in the flat band, strongly correlated limit. Our findings show that the interplay of quantum geometry and Coulomb interactions in moire bands allows for topological phases at fractional superlattice filling that spontaneously break time-reversal symmetry, a prerequisite in pursuit of zero magnetic field phases harboring fractional statistics as elementary excitations or bound to lattice dislocations.
77 - S.Brazovski , N. Kirova 1999
The rich order parameter of Spin Density Waves allows for an unusual object of a complex topological nature: a half-integer dislocation combined with a semi-vortex of the staggered magnetization. It becomes energetically preferable to ordinary disloc ation due to enhanced Coulomb interactions in the semiconducting regime. Generation of these objects changes the narrow band noise frequency.
A strong Kohn anomaly in ZrTe_3 is identified in the mostly transverse acoustic phonon branch along the modulation vector q_P with polarization along the a* direction. This soft mode freezes to zero frequency at the transition temperature T_P and the temperature dependence of the frequency is strongly affected by fluctuation effects. Diffuse x-ray scattering of the incommensurate superstructure shows a power law scaling of the intensity and the correlation length that is compatible with an order parameter of dimension n = 2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا