ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Fairness of Generative Adversarial Networks (GANs)

313   0   0.0 ( 0 )
 نشر من قبل Patrik Joslin Kenfack
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Generative adversarial networks (GANs) are one of the greatest advances in AI in recent years. With their ability to directly learn the probability distribution of data, and then sample synthetic realistic data. Many applications have emerged, using GANs to solve classical problems in machine learning, such as data augmentation, class unbalance problems, and fair representation learning. In this paper, we analyze and highlight fairness concerns of GANs model. In this regard, we show empirically that GANs models may inherently prefer certain groups during the training process and therefore theyre not able to homogeneously generate data from different groups during the testing phase. Furthermore, we propose solutions to solve this issue by conditioning the GAN model towards samples group or using ensemble method (boosting) to allow the GAN model to leverage distributed structure of data during the training phase and generate groups at equal rate during the testing phase.

قيم البحث

اقرأ أيضاً

174 - Depeng Xu , Shuhan Yuan , Lu Zhang 2018
Fairness-aware learning is increasingly important in data mining. Discrimination prevention aims to prevent discrimination in the training data before it is used to conduct predictive analysis. In this paper, we focus on fair data generation that ens ures the generated data is discrimination free. Inspired by generative adversarial networks (GAN), we present fairness-aware generative adversarial networks, called FairGAN, which are able to learn a generator producing fair data and also preserving good data utility. Compared with the naive fair data generation models, FairGAN further ensures the classifiers which are trained on generated data can achieve fair classification on real data. Experiments on a real dataset show the effectiveness of FairGAN.
We propose a unified game-theoretical framework to perform classification and conditional image generation given limited supervision. It is formulated as a three-player minimax game consisting of a generator, a classifier and a discriminator, and the refore is referred to as Triple Generative Adversarial Network (Triple-GAN). The generator and the classifier characterize the conditional distributions between images and labels to perform conditional generation and classification, respectively. The discriminator solely focuses on identifying fake image-label pairs. Under a nonparametric assumption, we prove the unique equilibrium of the game is that the distributions characterized by the generator and the classifier converge to the data distribution. As a byproduct of the three-player mechanism, Triple-GAN is flexible to incorporate different semi-supervised classifiers and GAN architectures. We evaluate Triple-GAN in two challenging settings, namely, semi-supervised learning and the extreme low data regime. In both settings, Triple-GAN can achieve excellent classification results and generate meaningful samples in a specific class simultaneously. In particular, using a commonly adopted 13-layer CNN classifier, Triple-GAN outperforms extensive semi-supervised learning methods substantially on more than 10 benchmarks no matter data augmentation is applied or not.
The standard practice in Generative Adversarial Networks (GANs) discards the discriminator during sampling. However, this sampling method loses valuable information learned by the discriminator regarding the data distribution. In this work, we propos e a collaborative sampling scheme between the generator and the discriminator for improved data generation. Guided by the discriminator, our approach refines the generated samples through gradient-based updates at a particular layer of the generator, shifting the generator distribution closer to the real data distribution. Additionally, we present a practical discriminator shaping method that can smoothen the loss landscape provided by the discriminator for effective sample refinement. Through extensive experiments on synthetic and image datasets, we demonstrate that our proposed method can improve generated samples both quantitatively and qualitatively, offering a new degree of freedom in GAN sampling.
167 - Hung-Yu Tseng , Lu Jiang , Ce Liu 2021
Recent years have witnessed the rapid progress of generative adversarial networks (GANs). However, the success of the GAN models hinges on a large amount of training data. This work proposes a regularization approach for training robust GAN models on limited data. We theoretically show a connection between the regularized loss and an f-divergence called LeCam-divergence, which we find is more robust under limited training data. Extensive experiments on several benchmark datasets demonstrate that the proposed regularization scheme 1) improves the generalization performance and stabilizes the learning dynamics of GAN models under limited training data, and 2) complements the recent data augmentation methods. These properties facilitate training GAN models to achieve state-of-the-art performance when only limited training data of the ImageNet benchmark is available.
Generative adversarial networks (GANs) have shown remarkable success in generating realistic data from some predefined prior distribution (e.g., Gaussian noises). However, such prior distribution is often independent of real data and thus may lose se mantic information (e.g., geometric structure or content in images) of data. In practice, the semantic information might be represented by some latent distribution learned from data. However, such latent distribution may incur difficulties in data sampling for GANs. In this paper, rather than sampling from the predefined prior distribution, we propose an LCCGAN model with local coordinate coding (LCC) to improve the performance of generating data. First, we propose an LCC sampling method in LCCGAN to sample meaningful points from the latent manifold. With the LCC sampling method, we can exploit the local information on the latent manifold and thus produce new data with promising quality. Second, we propose an improved version, namely LCCGAN++, by introducing a higher-order term in the generator approximation. This term is able to achieve better approximation and thus further improve the performance. More critically, we derive the generalization bound for both LCCGAN and LCCGAN++ and prove that a low-dimensional input is sufficient to achieve good generalization performance. Extensive experiments on four benchmark datasets demonstrate the superiority of the proposed method over existing GANs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا