ترغب بنشر مسار تعليمي؟ اضغط هنا

ShowerModel: A Python package for modelling cosmic-rayshowers, their light production and their detection

94   0   0.0 ( 0 )
 نشر من قبل Daniel Morcuende
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic-ray observatories necessarily rely on Monte Carlo simulations for their design, calibration and analysis of their data. Detailed simulations are very demanding computationally. We present a python-based package called ShowerModel to model cosmic-ray showers, their light production and their detection by an array of telescopes. It is based on parameterizations of both Cherenkov and fluorescence emission in cosmic-ray induced air showers. The package permits the modelling of fluorescence telescopes, imaging air Cherenkov telescopes, wide-angle Cherenkov detectors or any hybrid design. ShowerModel was conceived as a tool to speed up calculations that do not require a full simulation or that may serve to complement complex Monte Carlo studies and data analyses (e.g., as a cross-check). It can also be used for educational purposes.



قيم البحث

اقرأ أيضاً

textsc{Pykat} is a Python package which extends the popular optical interferometer modelling software textsc{Finesse}. It provides a more modern and efficient user interface for conducting complex numerical simulations, as well as enabling the use of Pythons extensive scientific software ecosystem. In this paper we highlight the relationship between textsc{Pykat} and textsc{Finesse}, how it is used, and provide an illustrative example of how it has helped to better understand the characteristics of the current generation of gravitational wave interferometers.
179 - D.A. Sanchez , C. Deil 2013
With the advent of the Large Array Telescope (LAT) on board the Fermi satellite, a new window on the Universe has been opened. Publicly available, the Fermi-LAT data come together with an analysis software named ScienceTools (ST, http://fermi.gsfc.na sa.gov/ssc/data/analysis/software/) which can be run through a Python interface. Nevertheless, for the user, the ST can be hard to run and imply several steps. Users already contributed with scripts for a specific task but no tool allowing a complete analysis is currently available. We present a Python package called {tt Enrico}, designed to facilitate the data analysis. Using only configuration files and front end tools from the command line, the user can easily perform/reproduce an entire Fermi analysis and make plots for publications. It also include new features like debug plots, pipeline execution on one or several CPUs, downloading of the Fermi data or the generation of a sky model from the Fermi catalogue. {tt Enrico} is an open-source project currently available for download at url{https://github.com/gammapy/enrico}
High-resolution optical integral field units (IFUs) are rapidly expanding our knowledge of extragalactic emission nebulae in galaxies and galaxy clusters. By studying the spectra of these objects -- which include classic HII regions, supernova remnan ts, planetary nebulae, and cluster filaments -- we are able to constrain their kinematics (velocity and velocity dispersion). In conjunction with additional tools, such as the BPT diagram, we can further classify emission regions based on strong emission-line flux ratios. LUCI is a simple-to-use python module intended to facilitate the rapid analysis of IFU spectra. LUCI does this by integrating well-developed pre-existing python tools such as astropy and scipy with new machine learning tools for spectral analysis (Rhea et al. 2020). Furthermore, LUCI provides several easy-to-use tools to access and fit SITELLE data cubes.
We describe a new open source package for calculating properties of galaxy clusters, including NFW halo profiles with and without the effects of cluster miscentering. This pure-Python package, cluster-lensing, provides well-documented and easy-to-use classes and functions for calculating cluster scaling relations, including mass-richness and mass-concentration relations from the literature, as well as the surface mass density $Sigma(R)$ and differential surface mass density $DeltaSigma(R)$ profiles, probed by weak lensing magnification and shear. Galaxy cluster miscentering is especially a concern for stacked weak lensing shear studies of galaxy clusters, where offsets between the assumed and the true underlying matter distribution can lead to a significant bias in the mass estimates if not accounted for. This software has been developed and released in a public GitHub repository, and is licensed under the permissive MIT license. The cluster-lensing package is archived on Zenodo (Ford 2016). Full documentation, source code, and installation instructions are available at http://jesford.github.io/cluster-lensing/.
We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as Fle xible Image Transport System (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا