ترغب بنشر مسار تعليمي؟ اضغط هنا

Pykat: Python package for modelling precision optical interferometers

400   0   0.0 ( 0 )
 نشر من قبل Daniel Brown Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

textsc{Pykat} is a Python package which extends the popular optical interferometer modelling software textsc{Finesse}. It provides a more modern and efficient user interface for conducting complex numerical simulations, as well as enabling the use of Pythons extensive scientific software ecosystem. In this paper we highlight the relationship between textsc{Pykat} and textsc{Finesse}, how it is used, and provide an illustrative example of how it has helped to better understand the characteristics of the current generation of gravitational wave interferometers.



قيم البحث

اقرأ أيضاً

Cosmic-ray observatories necessarily rely on Monte Carlo simulations for their design, calibration and analysis of their data. Detailed simulations are very demanding computationally. We present a python-based package called ShowerModel to model cosm ic-ray showers, their light production and their detection by an array of telescopes. It is based on parameterizations of both Cherenkov and fluorescence emission in cosmic-ray induced air showers. The package permits the modelling of fluorescence telescopes, imaging air Cherenkov telescopes, wide-angle Cherenkov detectors or any hybrid design. ShowerModel was conceived as a tool to speed up calculations that do not require a full simulation or that may serve to complement complex Monte Carlo studies and data analyses (e.g., as a cross-check). It can also be used for educational purposes.
We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as Fle xible Image Transport System (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity
High-resolution optical integral field units (IFUs) are rapidly expanding our knowledge of extragalactic emission nebulae in galaxies and galaxy clusters. By studying the spectra of these objects -- which include classic HII regions, supernova remnan ts, planetary nebulae, and cluster filaments -- we are able to constrain their kinematics (velocity and velocity dispersion). In conjunction with additional tools, such as the BPT diagram, we can further classify emission regions based on strong emission-line flux ratios. LUCI is a simple-to-use python module intended to facilitate the rapid analysis of IFU spectra. LUCI does this by integrating well-developed pre-existing python tools such as astropy and scipy with new machine learning tools for spectral analysis (Rhea et al. 2020). Furthermore, LUCI provides several easy-to-use tools to access and fit SITELLE data cubes.
The Python package fluidsim is introduced in this article as an extensible framework for Computational Fluid Mechanics (CFD) solvers. It is developed as a part of FluidDyn project (Augier et al., 2018), an effort to promote open-source and open-scien ce collaboration within fluid mechanics community and intended for both educational as well as research purposes. Solvers in fluidsim are scalable, High-Performance Computing (HPC) codes which are powered under the hood by the rich, scientific Python ecosystem and the Application Programming Interfaces (API) provided by fluiddyn and fluidfft packages (Mohanan et al., 2018). The present article describes the design aspects of fluidsim, viz. use of Python as the main language; focus on the ease of use, reuse and maintenance of the code without compromising performance. The implementation details including optimization methods, modular organization of features and object-oriented approach of using classes to implement solvers are also briefly explained. Currently, fluidsim includes solvers for a variety of physical problems using different numerical methods (including finite-difference methods). However, this metapaper shall dwell only on the implementation and performance of its pseudo-spectral solvers, in particular the two- and three-dimensional Navier-Stokes solvers. We investigate the performance and scalability of fluidsim in a state of the art HPC cluster. Three similar pseudo-spectral CFD codes based on Python (Dedalus, SpectralDNS) and Fortran (NS3D) are presented and qualitatively and quantitatively compared to fluidsim. The source code is hosted at Bitbucket as a Mercurial repository bitbucket.org/fluiddyn/fluidsim and the documentation generated using Sphinx can be read online at fluidsim.readthedocs.io.
We describe a new open source package for calculating properties of galaxy clusters, including NFW halo profiles with and without the effects of cluster miscentering. This pure-Python package, cluster-lensing, provides well-documented and easy-to-use classes and functions for calculating cluster scaling relations, including mass-richness and mass-concentration relations from the literature, as well as the surface mass density $Sigma(R)$ and differential surface mass density $DeltaSigma(R)$ profiles, probed by weak lensing magnification and shear. Galaxy cluster miscentering is especially a concern for stacked weak lensing shear studies of galaxy clusters, where offsets between the assumed and the true underlying matter distribution can lead to a significant bias in the mass estimates if not accounted for. This software has been developed and released in a public GitHub repository, and is licensed under the permissive MIT license. The cluster-lensing package is archived on Zenodo (Ford 2016). Full documentation, source code, and installation instructions are available at http://jesford.github.io/cluster-lensing/.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا